mpz_t function for complex numbers

David Gillies daggillies at gmail.com
Mon Apr 8 18:21:38 CEST 2013


Gaussian integers are a ring, so as long as operations are restricted to
addition and multiplication, everything will be fine. A GI modulo a GI is
OK. But they're not closed under exponentiation.


On Mon, Apr 8, 2013 at 9:20 AM, Torbjorn Granlund <tg at gmplib.org> wrote:

> "Bernhard Helmes" <bhelmes at gmx.de> writes:
>
>      Are there some mpz_t functions availible for complex numbers ?
>
>      I would like to write and add some function to Gmp as
>      void mpz_complx_mul         (mpz_t rop1, mpz_t rop2, mpz_t a, mpz_t b,
>      mpz_t c, mpz_t d)
>      void mpz_complx_mulm      (mpz_t rop1, mpz_t rop2, mpz_t a, mpz_t b,
>      mpz_t c, mpz_t d, mpz_t mod)
>      void mpz_complx_sqr          (mpz_t rop1, mpz_t rop2, mpz_t a, mpz_t
> b)
>      void mpz_complx_sqrm       (mpz_t rop1, mpz_t rop2, mpz_t a, mpz_t b,
>      mpz_t mod)
>      void mpz_complx_powm      (mpz_t rop1, mpz_t rop2, mpz_t base,1 mpz_t
>      base2, mpz_t exp, mpz_t mod)
>      void mpz_complx_powm_ui (mpz_t rop1, mpz_t rop2, mpz_t base,1 mpz_t
>      base2, unsigned long int exp, mpz_t mod)
>
>      Which name convention would be usefull and which is the standart
>      convention for the parameters ?
>
> There is a mpc extension library  which adds complex numbers.
> But if I understand you correctly, you want Gaussian integers.
> I am not aware of any work in that area.
>
> --
> Torbjörn
> _______________________________________________
> gmp-discuss mailing list
> gmp-discuss at gmplib.org
> https://gmplib.org/mailman/listinfo/gmp-discuss
>



-- 
David Gillies
San Jose
Costa Rica


More information about the gmp-discuss mailing list