mpz_t function for complex numbers
David Gillies
daggillies at gmail.com
Mon Apr 8 18:21:38 CEST 2013
Gaussian integers are a ring, so as long as operations are restricted to
addition and multiplication, everything will be fine. A GI modulo a GI is
OK. But they're not closed under exponentiation.
On Mon, Apr 8, 2013 at 9:20 AM, Torbjorn Granlund <tg at gmplib.org> wrote:
> "Bernhard Helmes" <bhelmes at gmx.de> writes:
>
> Are there some mpz_t functions availible for complex numbers ?
>
> I would like to write and add some function to Gmp as
> void mpz_complx_mul (mpz_t rop1, mpz_t rop2, mpz_t a, mpz_t b,
> mpz_t c, mpz_t d)
> void mpz_complx_mulm (mpz_t rop1, mpz_t rop2, mpz_t a, mpz_t b,
> mpz_t c, mpz_t d, mpz_t mod)
> void mpz_complx_sqr (mpz_t rop1, mpz_t rop2, mpz_t a, mpz_t
> b)
> void mpz_complx_sqrm (mpz_t rop1, mpz_t rop2, mpz_t a, mpz_t b,
> mpz_t mod)
> void mpz_complx_powm (mpz_t rop1, mpz_t rop2, mpz_t base,1 mpz_t
> base2, mpz_t exp, mpz_t mod)
> void mpz_complx_powm_ui (mpz_t rop1, mpz_t rop2, mpz_t base,1 mpz_t
> base2, unsigned long int exp, mpz_t mod)
>
> Which name convention would be usefull and which is the standart
> convention for the parameters ?
>
> There is a mpc extension library which adds complex numbers.
> But if I understand you correctly, you want Gaussian integers.
> I am not aware of any work in that area.
>
> --
> Torbjörn
> _______________________________________________
> gmp-discuss mailing list
> gmp-discuss at gmplib.org
> https://gmplib.org/mailman/listinfo/gmp-discuss
>
--
David Gillies
San Jose
Costa Rica
More information about the gmp-discuss
mailing list