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1. Introduction

In 1987, Henry Massalin, of Columbia University,
described a superoptimizer that generates optimal instruc-
tion sequences given a function to be performed [1]. The
sequences are found by doing an exhaustive search over a
subset of the instructions of the machine for which the
optimization is made. Little or no mention of this impor-
tant technique has occurred since. In the present work, we
describe an alternative technique for constructing a
superoptimizer, which will call the GNU Superoptimizer or
GSO.

We believe this optimizer is faster and more versatile
than Massalin’s original work. We show how GSO was
used to add patterns to GCC, the GNU C compiler, so it can
eliminate many branch instructions when generating code
for the IBM RS/6000. A number of surprising results were
obtained, many of which were unknown to the architects of
the RS/6000 processor.

In the first section we present some sample results of
the superoptimizer. The next section discusses the basic
design and structure of the GNU C compiler. Subse-
quently, we show how the results of the superoptimizer
were used to enable the GNU C compiler to produce very
compact code sequences on the RS/6000. After a brief dis-
cussion of the use of some specific RS/6000 instructions,
the final two sections discuss how the GNU superoptimizer
works and the limitations of superoptimization, and present
a large number of instruction sequences generated by the
superoptimizer for the RS/6000.

Although this paper uses the RS/6000 for all its
examples, the techniques described here are applicable to

most machines.

2. Sample Results of GSO

We first study the output produced by the superoptimizer
when it searches for sequences that compute the value of
the C expression (signed int) a >= 0. The input is
assumed to be in register 3 and the output is placed in
register 5.

The RS/6000 is a three-operand machine. Usually
the presence of the letter ‘‘i’’ in an operation code signifies
an immediate constant, ‘‘il’’, means that the operation is
performed on the low-order 16 bits of a quantity, and ‘‘iu’’
means that the operation is performed on the high-order 16
bits.

Here is the superoptimizer output for the C expres-
sion (signed int) a >= 0 on the RS/6000.

1: sri r4,r3,31
xoril r5,r4,1

2: srai r4,r3,31
ai r5,r4,1

3: srai r4,r3,31
cal r5,1(r4)

4: xoriu r4,r3,0x8000
sri r5,r4,31

5: nand r4,r3,r3
sri r5,r4,31

6: sfi r4,r3,-1
sri r5,r4,31

GSO found six ways to perform the operation, each
of which takes two instructions. The first sequence com-
putes (a < 0) by shifting the sign bit to the low-order bit,
and then complements it by doing an xor with the con-
stant one. The second and third sequences first duplicate



the sign bit into the entire word (thus yielding –1 if a is
negative, and 0 if a is greater than or equal to 0) and then
add 1 to get the desired result. The difference between
sequence two and three is in the instruction used to add 1.
In the fourth sequence, the sign bit is first inverted and then
shifted right into the low-order bit. The fifth and sixth
sequences one’s complement the entire value and then shift
the sign bit into the low-order bit. They differ only in the
manner in which the one’s complement is computed. In the
fifth sequence a logical operation is used, while an arith-
metic operation is used in the sixth sequence.

These sequences do not use the carry bit. Therefore
they are machine-independent and can be used on any
machine that has logical negation and logical right shift
instructions. Indeed, this particular method for computing
(signed int) a >= 0 has been known for quite some
time. It is included here as an example of the superoptim-
izer output.

More interesting sequences involve use of the carry
bit of a machine. On the RS/6000, the carry bit is simply
the carry out of the high-order bit of the adder. A subtrac-
tion is defined as an addition of the minuend, the one’s
complement of the subtrahend, and either the carry bit or
the constant one. The result of this addition determines the
generated value of the carry bit.

When GSO is asked to compute the value of the
expression r3 == 0, a single two-instruction sequence is
found. It is

1: sfi r4,r3,0
ae r5,r4,r3

This sequence is quite typical of the type of carry-bit
manipulations that occur in these types of conditional
expressions. It works as follows: The first instruction com-
putes the sum of the one’s complement of r3 and 1. It sets
r4 to the result of this addition, which is –r3, and sets the
carry bit to the carry out of the high-order bit of the addi-
tion, which, in this case, has the effect of setting the carry
bit to 1 if r3 equals zero, and to 0 otherwise. The second
instruction sets r5, the final result, to r4 + r3 + carry
= –r3 + r3 + carry, which is equal to the carry bit from
the first instruction, or our desired final result.

More sequences will be presented throughout this
paper and a large listing of sequences is presented in Sec-
tion 8.

3. The GNU C Compiler

The GNU C compiler (GCC) is a highly portable, retarget-
able, optimizing C compiler. The recently released GCC
version 2 supports virtually all general-purpose micropro-
cessors currently in use and includes front ends for C, C++
and Objective-C, with front ends for FORTRAN and Ada
under development. The code quality of GCC is quite

competitive with commercial C compilers; in most cases
the code produced for the Sparc and Motorola 88100 (and
possibly others) runs faster than code produced by any
other compiler. At least two vendors (NeXT and Data Gen-
eral) distribute GCC as the C compiler for their systems.

Rather than using a fixed intermediate language and
compiling it for a variety of machines, GCC instead defines
a representation called RTL, for register transfer language,
in which the actual instructions of the target machine are
represented. The source program is initially compiled
directly into RTL representing the target machine instruc-
tions and using an unlimited number of registers. The
remaining compilation phases perform optimizations and
register allocation. The idea of using RTL and some of the
optimizations came from the Portable Optimizer (PO), writ-
ten at the University of Arizona by Jack Davidson and
Christopher Fraser [3].

The implementation of GCC is much more fully
described in [2]; here we summarize the points of interest
to the remainder of the present paper.

Instructions in GCC, referred to as insns, are
represented in RTL and are an expression tree consisting of
the various RTL operators along with pointers to the next
and previous insns and some dataflow information. RTL is
usually written in a LISP-like notation; a typical add insn
looks like:

(insn 11 10 12 (set (reg/i:SI 0)
(plus:SI (reg:SI 22)

(const_int 10)))
152 {addsi3} (insn_list 9 (nil))
(expr_list:REG_DEAD (reg:SI 22) (nil)))

This indicates that register 0 is set to the sum of
register 22 and the constant integer 10. The unique number
assigned to the insn is 11, the next insn is numbered 12,
and the previous insn is 10. This insn matches pattern
number 152 (named ‘‘addsi3’’) in the machine description
file. The value used in this insn (register 22) was set in insn
number 9 (and this is the first use) and register 22 dies in
this insn.

Machine description files contain a list of patterns,
which describe the instructions available on the machine
and how to generate code for basic operations. A typical
pattern, if named, says what RTL to generate for a particu-
lar operation (for example, addsi3 means to do a three-
operand addition of 4-byte integers). All patterns are used
to specify what insns are valid and how to generate assem-
bly code for the insn.

Each insn generated must match some pattern. The
compiler ensures that all transformations applied to the insn
chain as part of the optimization process continue to allow
each insn to match some pattern. The addsi3 pattern
from the description file for the AMD 29000 (the pattern



for the RS/6000 is slightly more complex) is as follows:
(define_insn "addsi3"

[(set (match_operand:SI 0 "gen_reg_operand" "=r,r")
(plus:SI (match_operand:SI 1 "gen_reg_operand" "%r,r")

(match_operand:SI 2 "add_operand" "rI,N")))]
""
"@
add %0,%1,%2
sub %0,%1,%n2")

Since insns are represented as expression trees, the
result of one insn can be substituted directly into its use in a
second insn. If the insn that results from such a substitu-
tion matches a pattern in the machine description file, we
are able to save an instruction in the compiled program.
This transformation was originally done by the University
of Arizona compiler and in GCC is done in a phase called
the combiner. The combiner is also able to perform a wide
variety of algebraic simplifications.

Typically, merging two or more insns together into
one insn forms complex addressing modes on CISC
machines. It is also used to form specialized instructions
such as NOR or the various ‘‘multiply-accumulate’’ instruc-
tions that have become common.

Optimization phases of GCC which run before the
combiner perform jump optimizations, common-
subexpression elimination, and loop optimizations includ-
ing strength reduction and loop unrolling. Following the
combiner is instruction scheduling (to reduce data-
dependent stalls on pipelined machines), register allocation,
another jump optimization and instruction scheduling pass,
and delay-slot filling.

4. Elimination of Conditional Jumps

In this section, we discuss the cost of conditional jumps,
general methods used to eliminate them, and how we used
the superoptimizer to produce efficient code on the
RS/6000 that avoids jumps.

4.1. Costs of Jumps

Fundamentally, jumps interfere with the pipelined execu-
tion of instructions. Most modern processors have features
that minimize this cost, for example by using delayed-
branches, which require the compiler to find instructions to
place in delay slots.

The RS/6000 uses a different, and quite novel, tech-
nique to streamline the execution of branch instructions.
There are four execution units on the RS/6000: an integer
unit, a floating-point unit, a condition-code unit, and a
branch processor. Each cycle can fetch four instructions
and dispatch them to the appropriate unit. Because of this
structure, unconditional branches can be performed in
parallel with other instruction execution at a net cost of
zero cycles.

Conditional branches, however, often have a non-
zero cost. The timing of conditional branches is quite

complex and is described in more detail in [4]. Basically,
the cost of a conditional branch depends on the number of
cycles between the setting of the condition flag and the
branch that tests it. If sufficient time has elapsed, the
branch takes zero cycles. Otherwise, there is a delay of
three cycles between the setting of the condition flag and
the branch for taken branches and zero cycles for not taken
branches (however, in the case of not taken branches, there
must be a total of five cycles of instructions between the
compare and the next branch after the not-taken branch to
avoid additional delays).

On the RS/6000, instruction scheduling can some-
times be used to reduce the required delay, although this is
usually not successful since most basic blocks are short and
many scheduling algorithms only operate within one basic
block. For machines with delay slots, delay slot scheduling
can be used to reduce the cost of delay slots. GCC per-
forms both optimizations.

Even when the cost of a branch can be reduced, it is
nevertheless useful to eliminate as many jumps as possible.
Not only has the branch cost not been reduced to zero by
architectural features but it is desirable to increase the
length of basic blocks. This is because optimizations are
easier to perform within a single basic block; most of the
optimizations in GCC, such as the combiner and instruction
scheduling, only operate within a basic block.

The newly-announced DEC ‘‘Alpha’’ uses neither
the technique used by the RS/6000 nor delay slots. Instead,
it relies on branch-prediction techniques, and DEC warns
that mis-predicted branches can cost ten cycles. Eliminat-
ing conditional jumps on the machine is therefore quite
important.

4.2. Techniques for Elimination of Jumps

The techniques for eliminating jumps rely on the fact that
jumps are often used to skip a relatively short section of
code. These methods often involve what are sometimes
called set-condition code (scc) instructions, which set a data
register to one value if a comparison is true and to another
value if the comparison is false. Machines that include
instructions specifically for this purpose are the Motorola
68k and 88k families, the Intel i386 family, the AMD 29k
family, the MIPS processors, and the newly-announced
‘‘Alpha’’ from DEC.

The ‘‘true’’ value is usually either plus or minus one
but is sometimes a value consisting of just the sign bit. We
sometimes want scc instructions that produce plus one for
true and zero for false and sometimes want versions that
yield minus one or zero. The following table shows how to
obtain these values from all three versions of hardware
instructions. Each entry shows the instruction required to
convert the hardware ‘‘true’’ value into the desired
representations.



_ _______________________________________________ _____________________________________________
Desired Truth Value_ ___________________________________Hardware

Value +1 –1_ _____________________________________________
+1 no-op negate
–1 negate no-op

sign bit logical right shift arithmetic right shift_ ______________________________________________ ______________________________________________ 










































In this section, we assume that all scc instructions
return either plus one or zero, i.e., the value returned from a
C relational expression.

The most straightforward application of scc instruc-
tions is to generate code for C relational operators assigned
to a variable, for example, a = (b >= c). To compile
this statement, we simply apply the ge scc operation to b

and c and place its output in a.

The compiler can also do this transformation if the
statement is coded as a = ((b >= c) ? 1 : 0) or by a
series of statements such as

if (b >= c)
a = 1;

else
a = 0;

This transformation is actually a special case of a
more general principle. If an expression is to have the
value zero if some condition is true and some other, possi-
bly its previous, value if the condition is false, an scc
instruction can also be used.

For example, consider the expression a >= b ? c

: 0. We can evaluate this expression by taking a value
consisting of all one bits when the condition is true and
zero when it is false and performing a logical and of this
value with C. That is, the given expression is equivalent to
c & –(a >= b). The transformation can also be done if
the equivalent if statement is used. Even more generally,
code such as

if (cond)
foo = 0;

is equivalent to foo &= –(! cond).

The next section will show how this general principle
along with the use of GSO-generated sequences can result
in quite compact code for some conditional expressions.
However, this principle can be used even in the absence of
scc operations, because of the algebraic simplifications
done by the GCC combine phase.

Consider what happens when the expression (a &

8) != 0 ? 4 : 0 is compiled for the RS/6000 (the first
operand of the conditional operator might be the result of
testing a single-bit field). Using the transformation dis-
cussed above, this expression is equivalent to 4 & –((a

& 8) != 0). The following transformations are then

applied in sequence (we will represent logical right shifts as
l>> and arithmetic right shifts as a>> and assume 32-bit
words):

• To obtain a one if a single-bit value is not equal to zero
and a zero if it is, we shift the value to the low-order
bit. The expression is now 4 & –((a & 8) l>> 3).

• A single-bit value can be negated by shifting that bit to
the sign bit and then arithmetically shifting it back (to
the low-order bit in this case). The expression is now
4 & ((((a & 8) l>> 3) << 31) a>> 31).

• The two logical shifts are equivalent to a single right
shift of 28 bits, yielding 4 & (((a & 8) << 28)

a>> 31).

• Logically and’ing a sign-extended value with a
single-bit constant in the range of the extended sign bits
can be done by a logical shift of the sign bit to the
desired position. The expression is now (((a & 8)

<< 28) l>> 29)

• Finally, the two logical shifts can be merged into one
logical shift and one logical and operation. The origi-
nal expression is thus equivalent to (a l>> 1) & 4.

This expression can be evaluated in one instruction on the
RS/6000. The rlinm instruction rotates a register by a
specified constant number of bits and logically and’s it
with a mask, where a mask is either a single consecutive
group of one bits in a word of zeros or vice versa. This sin-
gle rlinm instruction is the code generated by GCC for
the original expression. Not only does using these transfor-
mations convert what would otherwise be four instructions
(which are generated by IBM’s compiler) into a single
instruction, it has eliminated an expensive branch, yielding
an average-case savings of more than a factor of four.

4.3. ‘‘scc’’ Instructions for the RS/6000

Most of the transformations shown above assume the
existence of short sequences of instructions that set a regis-
ter to 1 or 0 depending on the result of a comparison. On
the RS/6000, this can be done by doing a compare, possibly
performing a logical operation on the condition register
bits, copying the condition register into a general register
(mfcr), and extracting the relevant bit.

Unfortunately, there is a two cycle delay between the
compare and the mfcr and an additional single cycle delay
before the result of the mfcr can be accessed to extract the
desired bit. Thus, these operations take 6 or 7 cycles,
which is more than code using branch instructions would
take. (It might be possible to move other instructions to
hide the latencies, but these instructions could also be used
in the delay between compare and branch.) If we use these
code sequences, the advantage of having longer basic
blocks would be outweighed by the factor of two cost in
cycles. For this reason, it was recommended by researchers



at IBM that this method not be used in GCC.

To see if better sequences exist, we had GSO search
for the shortest sequences implementing the ten binary
comparisons and the six unary comparisons with zero (the
unsigned comparisons with zero are degenerate; for a

unsigned, a < 0 is always false, a >= 0 is always true,
a > 0 is equivalent to a != 0, and a <= 0 is equivalent
to a == 0).

We found that all 16 operations can be done in no
more than 3 instructions, three of the comparisons with
zero (==, !=, and >=) can be done in two instructions, and
one comparison with zero (<) can be done in one instruc-
tion (the sequences for >= 0 and == 0 were shown earlier
and all of these sequences are shown in Section 8).

None of the instructions used in these sequences
require any communication outside the integer execution
unit (such as compare and the mfcr instruction discussed
earlier); indeed only instructions executed by the integer
unit were included in GSO. The fact that such sequences
exist was an unexpected result, since discussions with some
of the architects of the RS/6000 at IBM led us to believe
that no such sequences existed for many of these operations
(some of these sequences, such as those for < 0 and !=,
were well-known previously).

These sequences enable us to produce code for C
statements of the form a = b rel-op c; for all 16 rel-op’s
that contain at most three instructions and execute in no
more than three cycles.

Recall from the previous section that we often need
variants of these operations that produce a value of minus
one for true and zero for false. One way to obtain such a
result is to simply negate the result of the sequences that
produce positive one for true and zero for false. However,
a close look at the first example in Section 2 suggests that
we might be able to find smaller sequences.

In that example, one of the ways we computed
(signed int) a >= 0 was by complementing A and
shifting the sign bit to the low-order bit. If a logical shift is
used, as in that code sequence, this produces a value of
positive one for true and zero for false. On the other hand,
if an arithmetic shift were used, it would produce negative
one for true and zero for false, which is the required result.
In this case, at least, the cost was the same whether a true
value was represented by positive or negative one.

To see if this was the case in general, we used GSO
to find the shortest sequences that compute C expressions
of the form –(a rel-op b). The result was that in 14 of the
16 cases, sequences were found of the same length as func-
tions that computed the non-negated conditional value; in
the remaining two cases, unsigned > and unsigned <, the
sequences computing the negated result were one instruc-
tion shorter (two instructions instead of three).

Expressions of the form shown above are rarely
encountered in C programs. However, as discussed above,
code that conditionally clears a register can be transformed
into expressions of the form a & –(b rel-op c). These
can be implemented by using the sequences for the previ-
ous set of operations and performing the indicated logical
and operation. Inspection of some of these sequences
showed that they often end with nand instructions, so we
wondered if it might be possible to perform the required
and operation without adding more instructions but instead
modifying the sequence.

We therefore added code to GSO to search for the
shortest sequences of the form a & –(b rel-op c) for all
16 comparison operations. The result was that in two cases,
unsigned >= and <=, the sequences including the and had
the same length as those without it, namely three instruc-
tions. In the other 14 cases, an additional instruction was
required, as expected.

The most interesting result was obtained when we
looked at the sequences for the 16 basic comparison opera-
tions and noticed that there was a sequence for almost all of
them that ended with an add or subtract instruction. We
were curious whether this instruction could also be used to
add another value to the result of the comparison, i.e., how
many instructions would be needed to compute a + (b

rel-op c). This operation is rather common, especially
when written in its equivalent form as

if (b rel-op c)
a++;

After adding code to GSO to search for the shortest
sequences implementing these expressions, we discovered
that in only two cases (< 0 and >= 0) did the addition
lengthen the sequence. Even more surprisingly, in two
other cases (unsigned <= and unsigned >=), the code to
compute the sum was shorter than that to compute the basic
comparison. For example, to compute a +

((unsigned) b <= (unsigned) c), the two instruc-
tions

sf r0,r4,r5
aze r6,r3

are used. (a is in r3, b in r4, c in r5, and the result is in
r6.) The first instruction subtracts b from c and the
second instructions adds the carry flag to zero plus A using
an aze instruction.

The RS/6000 has no single instruction to copy the
carry flag into a general register, so the sequence for com-
puting the comparison must use an extra instruction to set a
register to zero. That is why including the addition pro-
duces a shorter code sequence.

To take advantage of the surprising fact that the addi-
tion has no cost, we added code to GCC’s jump



optimization routine to convert the if statement to the
equivalent conditional expression shown above.

5. Adding GSO-produced Sequences to GCC

Getting GCC to produce the code sequences we presented
is a fairly straightforward task. The first step is to choose
the appropriate sequence to use, since many of these opera-
tions can be implemented by a number of different code
sequences. We used three criteria to choose the best
sequence:

(1) Some of the instructions on the RS/6000, particu-
larly arithmetic instructions involving the carry bit,
do not permit immediate operands. Some operands
of these functions (such as the second operand
being compared and the value added to the com-
parison result) will often be immediate constants.
Sequences that only use these operands in contexts
where immediate forms of the instruction exist are
preferred to sequences that do not.

(2) The fewer scratch registers a sequence required, the
more preferred the sequence.

(3) A sequence that could put its output in the same
register as an input is preferred to one that requires
the input and output to be in different registers.

The second step is to add the instruction patterns to
generate the code sequences. Because of the way GCC’s
combiner phase operates, this is a straightforward, though
sometimes tedious, task. For example, to generate the code
for the case shown above, the following pattern was added
to the RS/6000 definition file:

(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")

(plus:SI
(leu:SI
(match_operand:SI 1 "gen_reg_operand" "r")
(match_operand:SI 2 "reg_or_short_operand" "rI"))

(match_operand:SI 3 "gen_reg_operand" "r")))
(clobber (match_scratch:SI 4 "=&r"))]
""
"sf%I2 %4,%1,%2;aze %0,%3")

This pattern matches the RTL resulting from compil-
ing the expression a + ((unsigned) b <=

(unsigned) c. Operand 0 (the result), operand 1 (b), and
operand 3 (a) are all required to be in general-purpose
registers. Operand 2 (c) can be either in a register or be a
constant short enough to fit in the immediate field of an
arithmetic instruction. One scratch register is needed for
this instruction, specified by operand 4. The last line of the
pattern lists the assembler instructions this pattern should
generate. The string %n means that the assembler text for
operand n should be output. %I2 is replaced by the single
letter ‘‘i’’ if operand 2 is an immediate constant, otherwise
nothing is output.

As an example of the use of this pattern, we com-
piled the function

int
sub1 (a, b, c)

int a;
unsigned b, c;

{
if (b <= c)
a++;

return a;
}

with GCC. This program produced a single insn in GCC’s
internal representation:

(insn 21 13 22 (parallel[
(set (reg/i:SI 3)

(plus:SI (leu:SI (reg:SI 4)
(reg:SI 5))

(reg:SI 3)))
(clobber (reg:SI 0))

] ) 264 {sleu+30} (nil)
(expr_list:REG_DEAD (reg:SI 4)

(expr_list:REG_DEAD (reg:SI 5)
(expr_list:REG_UNUSED (reg:SI 0)

(nil)))))

The calling sequence on the RS/6000 has input
parameters passed in successive registers, starting with
register 3; the result is returned in register 3. In this case,
register 0 (a normal register on the RS/6000 for all pur-
poses except as a memory address) is used as a scratch
register. The generated code for the entire sub1 function
consists of the following three instructions:

sf r0,r4,r5
aze r3,r3
br

The first two instructions were generated by the pat-
tern shown above and the third instruction returns from the
function.

6. The doz, abs, and nabs Instructions

One of the more interesting instructions on the RS/6000 is
the Difference or Zero (doz) instruction. The instruction
doz rt,ra,rb computes the C expression rt = (ra >

rb) ? 0 : rb – ra.

This instruction has the potential to eliminate a
number of branch instructions. The signed max of two
values can be obtained by following this instruction with an
add of ra, computing rt = (ra > rb) ? ra : rb.
To compute the signed min of two values, the result of the
doz instruction can be subtracted from rb, computing rt

= (ra > rb) ? rb : ra. By having GCC detect the
idiom of a > b ? a : b and convert it into a max

operation (similarly for min), we can emit this two-
instruction sequence, again avoiding branches.



For unsigned min and max, GSO produced a
number of four-instruction sequences, some of which
involve the doz instruction. These are also generated by
GCC. The idiom a > 0 ? a : –a is also detected and
the abs instruction is generated. Similarly a > 0 ? –a

: a produces the nabs instruction, again eliminating
potential branches.

We were recently informed that the upcoming
RS/6000-based processor being designed by the new
IBM/Apple/Motorola consortium will not support the doz,
abs, and nabs instructions in hardware (they will trap and
be emulated in software) and it was suggested that GCC
should therefore avoid these instructions. To evaluate the
impact of the absence of these instructions, we created a
variant of GSO that did not have these instructions and
reran GSO on all the expressions described above.

We reproduced the well-known results that abs can
be done in three instructions and signed min and max can
be done in four. More surprisingly, we found that all four
of the signed comparisons (>=, >, <=, and <) use doz,
abs, or nabs and require a fourth instruction if these are
not available.

7. Operation of the GNU Superoptimizer

Massalin’s superoptimizer accepts a sequence of assembler
instructions describing a function and exhaustively gen-
erates all sequences of instructions of increasing length
until one is found that performs the desired computation.
Several heuristics prevent testing clearly impossible
sequences. His superoptimizer is written in the assembler
language for the target machine and operates by executing
the sequences on the target. The GNU superoptimizer
(GSO) has improvements in the areas of portability,
configurability and search strategy.

7.1. Portability and Configurability of GSO

GSO is approximately 3000 lines of C code and is host-
independent. Unlike Massalin’s superoptimizer, GSO
searches for sequences of instructions that compute one of
several goal functions that have been compiled into GSO.
The desired goal is selected with a command-line option
with a mnemonic name.

GSO generates code sequences for many different
target machines and is designed so that additional targets
can easily be added. Currently, GSO supports the IBM
RS/6000, the Sparc, the Motorola 68k and 88k, the AMD
29k, and the Intel 80386. Portability is accomplished by
defining generic operations which include the union of all
instructions supported by GSO for all supported machines.
C code is written to simulate each of these operations.

7.1.1. Goal Functions in GSO

One example of a goal function is eq0, which returns the
value 1 if its single argument is equal to zero and 0 other-
wise. To implement this goal function, the routine
eval_goal_function in GSO contains:

case EQ0:
r = v0 == 0;
break;

Another goal function discussed above was the result
of performing a logical and between one value (in this
case the third operand) and the negation of the comparison
of the first two operands. This goal function for a signed
<= comparison is called nales and is implemented as:

case NALES:
r = (–((signed) v0 <= (signed) v1)) & v2;
break;

Here is a list of some of the goal functions currently sup-
ported:

• eq and ne. Two-operand equality comparisons.

• les, ges, lts, and gts. Two-operand signed
inequality comparisons.

• leu, geu, ltu, and gtu. Two-operand unsigned
inequality comparisons.

• eq0, ne0, les0, ges0, lts0, and gts0. Single-
operand comparisons against zero. As discussed above,
the unsigned comparisons against zero are degenerate.

• neq, nne, nles, nges, nlts, ngts, nleu, ngeu,
nltu, ngtu, neq0, nne0, nles0, nges0, nlts0,
and ngts0. Same as above except that they return
negative one for true and zero for false.

• naeq, nane, nales, nages, nalts, nagts,
naleu, nageu, naltu, nagtu, naeq0, nane0,
nales0, nages0, nalts0, and nagts0. Three-
operand functions that compute the logical and of one
operand with the negated result of the comparison of
the other two operands. An example was shown at the
start of this section.

• peq, pne, ples, pges, plts, pgts, pleu, pgeu,
pltu, pgtu, peq0, pne0, ples0, pges0, plts0,
and pgts0. These functions add one operand to the
result of comparing the other two operands. E.g,
plts0(a, b, c) would be written ((signed) a <

(signed) b) + c in C.

• mins, maxs, minu, and maxu. Signed and unsigned
min and max operations.

• sgn. Returns positive one if the single operand is posi-
tive, zero if the operand is zero, and negative one if the
operand is negative.



• abs. Absolute value function.

• nabs. Negated absolute value function.

New goal functions are included by adding a tag to
an enum, adding the name and tag to a table used to parse
command line options, and adding a case to the switch

on goal tags to compute the desired function.

7.1.2. Target Machine Operations in GSO

This version of GSO was written to find instruction
sequences for code involving conditional operations. The
parts of the machine that are known to GSO are the carry
bit and a set of registers. All operations manipulate these
objects. We do not support operations referencing memory
since these will not be part of an optimal sequence of
instructions that compute functions on registers. If an input
or an output is actually in memory, the sequence produced
will normally have to be augmented with load or store
instructions on RISC machines. On CISC machines, it may
be possible to perform an operation directly on operands in
memory. In both cases, the essence of the instruction
sequence is not effected.

The operations that GSO uses to create sequences are
expressed in terms of generic operations, each of which is
available on some subset of the supported machines.

Twelve addition operations are provided, divided
into three groups of four. We believe that these operations
are general enough to describe the addition operations on
all current processors. Within each group, an operation can
either use or not use the value of the carry bit, and either
update the carry bit or leave it unchanged. The three
groups are addition (ADD), subtraction (SUB), and the addi-
tion of one value to the complement of the other (ADC). A
typical operation is denoted by ADC_CIO, which com-
putes the sum of the carry bit, one operand, and the com-
plement of the other and sets the carry bit corresponding to
the result of the addition.

Each machine has either ADD and SUB operations or
ADD and ADC operations. The distinction between the SUB

and ADC operations is in the meaning of the carry bit. On
machines with an ADC operation, the carry bit is the carry
out of the high-order bit when the ALU performs the sub-
traction, which it does by adding the first operand, the one’s
complement (bit-wise inverse) of the second operand, and
the constant 1. An ADC_CI operation computes the sum of
the first operand, the one’s complement of the second
operand, and the carry bit.

On machines with a SUB operation, the carry bit is
negated during subtractions so that it represents ‘‘borrow’’.
A SUB_CI operation subtracts the carry (really ‘‘bor-
row’’) from the difference of the two operands.

Of the machines supported by GSO, the Sparc, 68k,
and i386 have SUB operations and the remainder have ADC

operations. It is interesting to note that this difference in
behavior of the i386 and RS/6000 was a surprise to at least
one quite proficient assembler language programmer who
has written compilers for both machines.

These operations are executed by a block of C code.
Here is the code for the ADC_CIO operation, which is the
same as the ADC_CI operation mentioned above, except
that it also sets the carry bit as an output:

#define PERFORM_ADC_CIO(d, co, r1, r2, ci)
{ word __d = (r1) + ˜(r2) + (ci);
(co) = (ci) ? __d <= (r1) : __d < (r1);
(d) = __d;

}

The following is the complete list of operations in the
current version of GSO:

• COPY. Copy one register to another, or move an
immediate value into a register.

• EXCHANGE. Exchange two registers. Used only on
two-operand machines.

• ADD, ADD_CI, ADD_CO, ADD_CIO, ADC, ADC_CI,
ADC_CO, ADC_CIO, SUB, SUB_CI, SUB_CO, and
SUB_CIO. These are the addition and subtraction
operations discussed above.

• CMP. Set carry bit true if the first operand is less than
the second, when interpreted as unsigned numbers.

• COMCY. Complement the carry bit.

• AND, IOR, XOR, ANDC, IORC, EQV, NAND, and NOR.
Various logical operations. The carry bit is not
affected.

• AND_RC, IOR_RC, XOR_RC, ANDC_RC, IORC_RC,
EQV_RC, NAND_RC, and NOR_RC. Similar, but reset
the carry bit.

• LSHIFTR. Logical right shift.

• ASHIFTR. Arithmetic right shift.

• LSHIFTR_CO and ASHIFTR_CO. Logical and arith-
metic right shift, but copy last bit shifted out into the
carry bit.

• ASHIFTR_CON. Arithmetic right shift of the RS/6000.
Set carry bit if the shifted value is negative and if any
bits shifted out were non-zero, otherwise clear the
carry bit.

• ABS and NABS. Unary absolute value and negative
absolute value, respectively.

• DOZ. The RS/6000 doz instruction, described above.

• CPEQ, CPGE, CPGEU, CPGT, CPLE, CPLEU, CPLT,
CPLTU, and CPNEQ. If the specified comparison of two
operands is true, set the result to a value that contains
just the sign bit; otherwise set the result to zero. These
instructions are present in the AMD 29k family



processors.

The search routines know which machines have
which operations and what operands are supported for each
operation. A target-specific (via ifdef) function in GSO
produces assembler-language output of the sequences for
the selected target machine. To add support for a new
machine, the following must be done:

• Define generic operations for any instructions present
on the new machine but on no previous machine and
write C code to emulate them.

• Modify the conditionalization of the search routines to
reflect which operations are present in the new machine
and add any new operations.

• Write code to output the operations in the assembly
language of the target machine.

7.2. Search strategy of GSO

Both Massalin’s superoptimizer and GSO search for the
shortest sequence by first searching for sequences of length
1, then sequences of length 2 and continuing until a
sequence is found, or a specified bound is exceeded. The
strategies used when searching for a sequence of a given
length differ. Massalin’s superoptimizer generates every
possible sequence of the desired length. For each sequence
it applies a pruning procedure (described in his paper) to
eliminate obviously incorrect sequences and then tests the
sequence for correctness.

Like Massalin’s superoptimizer, GSO initially gen-
erates random arguments for all input operands of the goal
function. All computations are performed on these values
and values computed by instructions GSO has generated for
a putative sequence. No symbolic manipulations are per-
formed. GSO searches for instruction sequences using a
recursive iterative-deepening method, and avoids generat-
ing clearly useless instructions that would otherwise have
to be pruned later. Only operands that are either inputs to
the sequence or have been generated by previous instruc-
tions are tried. Similarly, if the carry bit has not yet been
set, an instruction that uses it will not be generated. If the
iterative-deepening search has reached a leaf node, the ulti-
mately computed value is compared to the value returned
by the goal function for the same input operands. If the
values are not equal, the generated sequence is immediately
discarded.

Initially the sequence consists of no instructions, the
carry flag is undefined, and the only available operands are
the inputs to the sequence. At each level of recursion, the
search function, synth, scans the list of all available
operations for the target machine, adds an operation to the
sequence, and makes a recursive call to add more opera-
tions if a leaf node is not reached. The operation is also

_ ______________________________________________
Goal Generated Code Goal Generated Code_ _______________________________________________ _______________________________________________ ______________________________________________

sf r5,r3,r4
sfe r6,r4,r3
ae r7,r6,r5

sfi r4,r3,0
ae r5,r4,3

eq eq0

_ ______________________________________________
doz r5,r3,r4
sfi r6,r5,0
ae r7,r6,r5

sri r4,r3,31
xoril r5,r4,1

ges ges0

_ ______________________________________________
sf r5,r4,r3
rlinm r6,r5,0,0,0
ae r7,r6,r6

sf r5,r3,r4
sfe r6,r6,r6
neg r7,r6

geu gtu

_ ______________________________________________
doz r5,r4,r3
nabs r6,r5
sri r7,r6,31

sfi r4,r3,0
ame r5,r4
sri r6,r5,31

gts gts0

_ ______________________________________________
doz r5,r4,r3
sfi r6,r5,0
ae r7,r6,r5

ai r4,r3,–1
aze r5,r4
sri r6,r5,31

les les0

_ ______________________________________________
sf r5,r3,r4
rlinm r6,r5,0,0,0
ae r7,r6,r6

sf r5,r4,r3
sfe r6,r6,r6
neg r7,r6

leu ltu

_ ______________________________________________
doz r5,r3,r4
nabs r6,r5
sri r7,r6,31

lts lts0 sri r4,r3,31

_ ______________________________________________
xor r5,r4,r3
nabs r6,r5
sri r7,r6,31

nabs r4,r3
sri r5,r4,31

ne ne0

_ ______________________________________________ 





















































































































































Table 1: Sequences for Simple Comparisons, (A rel-op B)

simulated and the resulting value is saved. Two versions of
synth are provided, one for 2-operand machines (the 68k
and i386, of those supported) and one for 3-operand
machines. On 3-operand machines, register move instruc-
tions are never present in an optimal instruction sequence,
so they need never be generated.

At each leaf of the search tree, the result of the last
operation is compared with the result of the goal function
applied to the random input values. If they agree, a poten-
tially valid sequence has been found and a more exhaustive
test will be performed to see if the sequence is most likely
to be correct. This test is similar to that used by Massalin:
first some typical operand values are tried and then random
values are tested. If the sequence passes, it is printed.

To reduce significantly the amount of searching
required, the choices of operands are limited to values gen-
erated by previous instructions. Operations that accept the
carry bit as an input will not be generated unless a previ-
ous operation set the carry bit. For commutative opera-
tions, only one ordering of the operands will be tried. The
destination of all operations is always the next available
register for a 3-operand machine, and one of the input
operands for a 2-operand machine. When generating the
last instruction even more restrictions are made.



Specifically, the last instruction must use the output or
carry bit produced by the penultimate instruction, other-
wise the penultimate instruction would not have been
needed.

These techniques allow for quite rapid generation of
sequences. All the sequences shown in this paper were
generated in only a few seconds on a modern workstation,
although searching for sequences of five instructions for
goal functions with three inputs can take a good part of an
hour.

7.3. Limitations of Superoptimizers

A fundamental problem with the technique of superoptimi-
zation is that the search space is approximately exponential
in the sequence length, and that the branching factor, i.e.,
the number of instruction choices at each point, is relatively

large. The approximate number of tested sequences is bk,
where b is the branching factor and k is the number of insns
generated in an output sequence. If b is large, the number
of tested sequences becomes huge, and the search space
will be too large for any longer sequences.

Keeping the branching factor as small as possible is
the most important way to make a superoptimizer able to

_ _____________________________________________
Goal Generated Code Goal Generated Code_ ______________________________________________ ______________________________________________ _____________________________________________

xor r5,r4,r3
ai r6,r5,–1
sfe r7,r7,r7

ai r4,r3,–1
sfe r5,r5,r5

neq neq0

_ _____________________________________________
doz r5,r3,r4
ai r6,r5,–1
sfe r7,r7,r7

sfi r4,r3,–1
srai r5,r4,31

nges nges0

_ _____________________________________________
sf r5,r4,r3
sfe r6,r6,r6
nand r7,r6,r6

sf r5,r3,r4
sfe r6,r6,r6

ngeu ngtu

_ _____________________________________________
doz r5,r4,r3
nabs r6,r5
srai r7,r6,31

sfi r4,r3,0
ame r5,r4
srai r6,r5,31

ngts ngts0

_ _____________________________________________
doz r5,r4,r3
ai r6,r5,–1
sfe r7,r7,r7

ai r4,r3,–1
aze r5,r4
srai r6,r5,31

nles nles0

_ _____________________________________________
sf r5,r3,r4
sfe r6,r6,r6
nand r7,r6,r6

sf r5,r4,r3
sfe r6,r6,r6

nleu nltu

_ _____________________________________________
doz r5,r3,r4
nabs r6,r5
srai r7,r6,31

nlts nlts0 srai r4,r3,31

_ _____________________________________________
xor r5,r4,r3
nabs r6,r5
srai r7,r6,31

nabs r4,r3
srai r5,r4,31

nne nne0

_ _____________________________________________ 





















































































































































Table 2: Negated Comparisons, –(A rel-op B)

generate longer sequences. GSO’s approach is to avoid
instructions with constants, with the exceptions of –1, 0,

+1, 231, and 231–1. As a result, the branching factor lies
between 100 and 1000, depending on the target instruction
set and the current search depth. If all possible 32-bit con-
stants were used blindly, the branching factor would exceed

232 — and superoptimization would become impractical.

For the kind of goal functions currently defined in
GSO, the limited set of constants is not believed to be a
problem. For other goal functions, we would have to be
smarter. To adequately choose the right set of constants for
a particular goal function is an interesting area for future
work.

Aside from the intentional omission of constants, it is
possible that instructions have been omitted unintention-
ally, and hence some of the sequences produced may not be
optimal.

For example in Massalin’s superoptimizer, which
tries a significant number of machine instructions, non-
optimal sequences have been produced. Massalin shows
sequences on the 68020 for computing d0 *= 29, d0 *=

39, d0 *= 156, and d0 *= 625. The first three use 5
instructions, while the last uses 7. What was not noticed is
that lea (load effective address) instructions can be used
to perform multiplications by 3, 5, and (sometimes) 9.
Since 625 is the fourth power of 5, it can be computed with
four consecutive lea instructions. Because lea only
operates on address registers, another two instructions are
required to copy between an address register and d0.

Thus, the shortest sequence for multiplication by 625
has 6 instructions. However, if the statement of the prob-
lem is weakened to the problem of taking a value in an
arbitrary register and putting the result into any register,
multiplication by 29, 39, and 625 can all be done in four

_ _______________________________________________
Goal Generated Code Goal Generated Code_ ________________________________________________ ________________________________________________ _______________________________________________

ai r5,r3,–1
sfe r6,r6,r6
and r7,r6,r4

srai r5,r3,31
andc r6,r4,r5

naeq0 nages0

_ _______________________________________________
sf r6,r4,r3
sfe r7,r7,r7
andc r8,r5,r7

sf r6,r3,r4
sfe r7,r7,r7
and r8,r7,r5

nageu nagtu

_ _______________________________________________
sf r6,r3,r4
sfe r7,r7,r7
andc r8,r5,r7

srai r5,r3,31
and r6,r5,r4

naleu nalts0

_ _______________________________________________
sf r6,r4,r3
sfe r7,r7,r7
and r8,r7,r5

nabs r5,r3
srai r6,r5,31
and r7,r6,r4

naltu nane0

_ _______________________________________________ 















































































Table 3: Negated Comparisons with and.



instructions.

If one wishes to include all machine instructions in a
superoptimizer, the GSO approach makes it slightly harder
to ensure that all instructions are included, because of the
introduction of the abstract operations. If actual machine
instructions were used, it would be possible to check them
off against a list of all valid machine instructions. With
GSO, there is a level of indirection that must also be
checked.

An early version of GSO demonstrated an interesting
case of an omitted operation. That version of GSO did not
try operations that set a register to a constant value but it
did try logical operations between previous values and the
constants listed above. In several sequences, an and that
cleared everything but the sign bit was generated. How-
ever, in the sequences in question, the subsequent use of the
result was in a context where the sign bit was irrelevant. A
more straightforward sequence would have been to set a
register to 0, but this was not one of the operations synth

tried in that version.

_ _____________________________________________
Goal Generated Code Goal Generated Code_ ______________________________________________ ______________________________________________ _____________________________________________

xor r6,r4,r3
sfi r7,r6,0
aze r8,r5

sfi r5,r3,0
aze r6,r4

peq peq0

_ _____________________________________________
doz r6,r3,r4
sfi r7,r6,0
aze r8,r5

dozi r5,r3,0
sfi r6,r5,0
aze r7,r4

pges pges0

_ _____________________________________________
sf r6,r4,r3
aze r7,r5

sf r6,r3,r4
sfe r7,r5,r6
sf r8,r7,r6

pgeu pgtu

_ _____________________________________________
doz r6,r4,r3
ai r7,r6,–1
aze r8,r5

a r5,r3,r3
sfe r6,r3,r5
aze r7,r4

pgts pgts0

_ _____________________________________________
doz r6,r4,r3
sfi r7,r6,0
aze r8,r5

srai r5,r3,31
sf r6,r3,r5
aze r7,r4

ples ples0

_ _____________________________________________
sf r6,r3,r4
aze r7,r5

sf r6,r4,r3
sfe r7,r5,r6
sf r8,r7,r6

pleu pltu

_ _____________________________________________
doz r6,r3,r4
ai r7,r6,–1
aze r8,r5

a r5,r3,r3
aze r6,r4

plts plts0

_ _____________________________________________
xor r6,r4,r3
ai r7,r6,–1
aze r8,r5

ai r5,r3,–1
aze r6,r4

pne pne0

_ _____________________________________________ 





















































































































































Table 4: Operations of the form (A rel-op B) + C.

7.4. Correctness of the Sequences

One must be careful in using the results of a superoptim-
izer, either GSO or Massalin’s original work. Neither pro-
gram exhaustively tests the resulting code sequences.
Although it is highly likely that they are correct, and an
incorrect sequence has never been found, each sequence
should be checked manually to ensure its correctness.

8. Complete Superoptimizer Results for the RS/6000

This section contains tables showing the shortest code
sequence for every goal function described in Section 7.1.1.
We list only one of multiple sequences, usually the one that
GCC will generate.

Table 1 shows the code generated for the 16 simple
comparisons. Table 2 shows the same comparisons, but
returning a negative one for true and zero for false. In
some cases, we can logically and the result of the previous
operations with another value at no extra cost; Table 3
shows those operations. Entries that are missing cannot be
done any cheaper than the code in Table 2 followed by an
and instruction. Table 4 shows the operations of the form
(A rel-op B) + C. Finally, Table 5 shows the code
sequence for miscellaneous operations.

9. Conclusions and Future Work

We have described a variation of Massalin’s Superoptim-
izer and shown how it can be used to produce extremely
efficient code sequences that do not contain jumps from

_ ___________________________
Goal Generated Code_ ____________________________ ____________________________ ___________________________
abs abs 4,3_ ___________________________
nabs nabs 4,3_ ___________________________

doz r5,r3,r4
a r6,r5,r3

maxs

_ ___________________________
xoriu r5,r4,0x8000
xoriu r6,r3,0x8000
doz r7,r5,r6
a r8,r7,r4

maxu

_ ___________________________
doz r5,r3,r4
sf r6,r5,r4

mins

_ ___________________________
xoriu r5,r4,0x8000
xoriu r6,r3,0x8000
doz r7,r5,r6
sf r8,r7,r3

minu

_ ___________________________
a r4,r3,r3
sfe r5,r3,r4
sfe r6,r5,r3

sgn

_ ___________________________ 




































































Table 5: Code Sequences for Miscellaneous Operations



code that initially has jumps. We have shown that instruc-
tion simulation techniques can be used to make a superop-
timizer both efficient and easily portable.

There are many possible areas for future work.
Clearly, more operations and goal functions can be added
to GSO, and this work is currently in progress. Similarly,
more machines can be supported.

Another interesting area for future work is the possi-
bility of integrating GSO into the configuration process of
GCC. This would allow the compiler to produce these
optimal sequences without the manual process of convert-
ing GSO-produced code sequences into instruction patterns
for the GCC configuration file.
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