# Pseudorandom seeding across OSs

James Wanless james at grok.ltd.uk
Fri Aug 26 17:16:26 CEST 2011

```Comments invited on the following, pls?

calc '2^89-1' | ./atkin237.gmp-5.0.1.fc4.64.static -q -D 25000 -s
1314589693 | tee M89.out.fc4.txt
gives the following:

random seed = 1314589693
error_shift = 1000
precision = 10000
Bmax = 2000
Dmax = 25000
N[0] = 618970019642690137449562111
a = 0
b = 302513242008898311736074797
m = 618970019642738353282250131
q = 57306024217633
P = (1551078804, 129200070788475181361333915)
P1 = (0, 1)
P2 = (62481432597139785791219519, 203263480146372859408770043)
Bmax = 2000
Dmax = 25000
D = -232, dT = 2, T = 1 -604729957849891344000
14871070713157137145512000000000
j = 24702262467542
N[1] = 57306024217633
a = 35794610422862
b = 9724446733322
m = 57306033368992
q = 1790813542781
P = (2146278725, 2802108587072)
P1 = (0, 1)
P2 = (9904855618109, 18280613671133)
Bmax = 2000
Dmax = 25000
N[2] = 1790813542781
a = 1596506533406
b = 0
m = 1790816120692
q = 3267912629
P = (1899729962, 337615315840)
P1 = (0, 1)
P2 = (116409767802, 258291951012)
Bmax = 2000
Dmax = 25000
N[3] = 3267912629
a = 1665050383
b = 0
m = 3268026626
q = 1489529
P = (850857143, 457449468)
P1 = (0, 1)
P2 = (304150492, 3062767971)
proven prime

calc '2^89-1' | ./atkin237.gmp-5.0.1.intelOSX.64.static -q -D 25000 -s
1314589693 | tee M89.out.OSX.txt
gives the following:

random seed = 1314589693
error_shift = 1000
precision = 10000
Bmax = 2000
Dmax = 25000
N[0] = 618970019642690137449562111
a = 0
b = 302513242008898311736074797
m = 618970019642738353282250131
q = 57306024217633
P = (1551078804, 129200070788475181361333915)
P1 = (0, 1)
P2 = (62481432597139785791219519, 203263480146372859408770043)
Bmax = 2000
Dmax = 25000
N[1] = 57306024217633
a = 0
b = 48662555364700
m = 57306037536579
q = 9014635447
P = (2870481986, 17982366183696)
P1 = (0, 1)
P2 = (40115503345589, 38878898732226)
Bmax = 2000
Dmax = 25000
N[2] = 9014635447
a = 0
b = 7280144252
m = 9014804269
q = 1908703
P = (1679807295, 2895427031)
P1 = (0, 1)
P2 = (1920628273, 8842887973)
proven prime

```