
Quotient approximation for schoolbook division

Niels Möller

August 5, 2018

Abstract

A new more efficient way to compute an approximative quotient suit-
able for school book division of multiprecision integers.

1 Background

This section gives a short overview of schoolbook division history, as it been
applied to the gmp [1] library.

Knuth, 1969

The classic description of schoolbook division is Knuth’s, see [3, Sec. 4.3.1,
Alg. D]. It works as follows.

To compute the most significant quotient word, start by dividing the two
most significant words of the numerator with the most significant word of the
divisor (the later is assumed normalized, i.e., most significant bit set). Next,
take one more word into account of both numerator and divisor, to check if
the approximation is a correct quotient for dividing the three most significant
numerator words with the two most significant. If it isn’t, it’s at most two units
too large, and is adjusted accordingly.

After these preliminary adjustments, the quotient word is usually correct,
with a small probability of it being one too large. So go ahead and compute
the full multiprecision remainder; check for the unlikely underflow, to do a final
adjustment of both the quotient word and the multiprecision remainder when
this happens.

Granlund-Montgomery, 1994

When computing one quotient word at a time, to produce a multiprecision quo-
tient, the numerator is updated incrementally by subtracting multiples of the
divisor, but the divisor itself is unchanged; it is a loop invariant. One can there-
fore speed up the computation of the quotient approximation by precomputing
an approximate reciprocal of the most significant divisor word. The initial di-
vison is then replaced by a few multiplications and adjustments, which is a
big win since division instructions are usually vastly slower than multiplication
instructions. See [2] for one clever way to do that.

1



Möller-Granlund, 2011

The main idea of this paper, when applied to schoolbook division, is to use
a reciprocal based on the two most sigificant divisor limbs. The reciprocal is
still a single word, but we can simplify the adjustment steps needed for each
quotient word, by using a slightly different reciprocal. In effect, moving some of
the adjustment work out of the loop and doing it as part of the precomputation
of the reciprocal. See [4].

This algorithm divides the three most significant words of the numerator
with the two most significant words of the divisor, producing the same candi-
date quotient as used in Knuth, but with simpler adjustment steps than earlier
methods.

Current work, 2018

The algorithms above all produce a correct quotient of three words by two.
When this is ready, it is applied to compute the full multiprecision remainder.
We need a final adjustment in the unlikely case that the computation of the full
remainder underflows.

Further improvement is based on two observations. First, since we do have
a final adjustment step, we don’t need a three-by-two quotient that is correct
in all cases. Second, the influence on the correct quotient from the third most
significant word of the numerator is very small.

We therefore aim to compute a candidate quotient based on the two most
significant words of both numerator and divisor. When applied to compute the
multiprecision remainder, it must be either be correct or one too large, and the
probability of error should be small. The resulting algorithm features simpler
adjustment steps than the earlier methods.

2 Notation and requirements

Let ` denote the computer word size, and let β = 2` denote the base im-
plied by the word size. Lower-case letters denote single-word numbers, and
upper-case letters represent numbers of any size. We use the notation X =
〈xn−1, . . . , x1, x0〉 = xn−1β

n−1 + · · ·+ x1β + x0, where the n-word integer X is
represented by the words xi, for 0 ≤ i < n.

We consider only one iteration of the schoolbook division algorithm, com-
puting a single quotient word; organizing the outer loop is out of scope for
these notes. Let the divisor D = 〈dn−1, . . . d0〉 consist of n > 2 words, and the
numerator U = 〈un, . . . n0〉 consist of n+ 1 words.

We assume that U < βD, so that the correct quotient bU/Dc is a single
word, and that dn−1 ≥ β/2 (normalization).

We need a function divappr, that lets us compute a candidate quotient
q ← divappr(un, un−1, dn−1, dn−2). To ensure that a single adjustment step is
sufficient for correctness, q must satisfy

−D ≤ U − qD < D

To get good performance, with the final adjustment step being rare, we want U−
qD < 0 to be unlikely. If the remainder U mod D can be assumed uniformely

2



random, we can achieve this by improving the lower bound from −D to −εD
for some small epsilon.

3 The divappr function

We define a function q ← divappr〈u1, u0〉, 〈d1, d0〉. Inputs consists of four single-
word numbers. We require that d1 ≥ β/2 and 〈u1, u0〉 ≤ d1, d0. The output Let
R′ denote the remainder

R′ = 〈u1, u0, 0〉 − q〈d1, d0〉

The output q is also a single word. In the borderline case 〈u1, u0〉 = 〈d1, d00〉,
divappr must produce q = β − 1. This correesponds to R′ = 〈d1, d0〉, and in
the context of schoolbook divison, q = β − 1 is the correct quotient, thanks to
the requirement that U < βD.

When 〈u1, u0〉 < 〈d1, d0〉, we require R′ to belong to the range

−2β ≤ R′ < 〈d1, d0〉

When q is applied to the full multiprecision numbers, the corresponding remain-
der

R = U − qD

satisfies R < D and

R > −3βn−1 ≥ − 6

β
D

ensuring that R < 0 is unlikely for random inputs.
To compute divappr, we will make use of the same approximate reciprocal

as for three-by-two division, defined as

v = b(β3 − 1)/〈d1, d0〉c − β

4 The algorithm

q ← divappr2(〈u1, u0〉, 〈d1, d0〉, v)

In: β/2 ≤ d1 < β, 〈u1, u1〉 ≤ 〈d1, d00〉,
v = b(β3 − 1)/〈d1, d0〉c − β

1 if 〈u1, u0〉 ≥ 〈d1, d0〉 − d1
2 return β − 1
3 〈q1, q0〉 ← vu2 + 〈u2, u1〉
4 q ← q1 + 1
5 〈p1, p0〉 ← qd0
6 r ← (u0 − qd1 − p1 − [p0 > 0]) mod β
7 if r ≥ q0
8 q ← (q − 1) mod β
9 r ← (r + d1 + 1) mod β

10 if r ≥ d1 − 1
11 q ← (q + 1) mod β
12 return q

3



The expression [p0 > 0] on line 6 denotes a conditional expression, with the value
one if p0 > 0, otherwise zero. We need to prove that the algorithm produces the
desired result in all cases.

Since
〈d1, d0〉(β − 1) = β2d1 + β(d1 − d0)− d0

we have b〈u1, u0, 0〉/〈d1, d0〉c ≥ β− 1 if and only if 〈u1, u0〉 ≥ 〈d1, d0〉− d1. This
is the condition on line 1, and it follows that we return q = β− 1 for all inputes
where it’s the correct quotient, and in the borderline case 〈u1, u0〉 = 〈d1, d0〉.

So let us assume that 〈u1, u0〉 < 〈d1, d0〉− d1; then the correct quotient is at
most β − 2. This ensures that in the cases that we return a quotient which is
one too large, that incorrect quotient still fits in one word.

The value q1 is always upper bounded by the correct quotient (since the
reciprocal v is rounded down), hence the the initial quotient candidate quotient,
computed on line 4, also fits in a single word.

Define

R′ = 〈u1, u0, 0〉 − (q1 + 1)〈d1, d0〉
= β [〈u1, u0〉 − (q1 + 1)d1 − p1]− p0

The computation on line 6 produces the middle word of R’,

r1 = b(R′ mod β2)/βc
= u1 − (q1 + 1)d1 − p1 − [p0 > 0] mod β

The last terms represents underflow from the low word, 0 − p0. Also let r0 =
−p0 mod β denote the low word, which intentionally isn’t used by the algorithm.

To analyze the situation, turn to the analysis of three-by-two division in [4,
Theorem 3]. We can tighten the upper bound slightly, since the proof in the pa-
per adds β to bound the contribution to the remainder from the least significant
numerator word, which in our setting is always zero. Hence, we have

max(β2 − 〈d1, d0〉, q0β)− β2 ≤ R′ < max(β2 − 〈d1, d0〉, q0β)− β

We treat the two possible signs of R′ separately.

Assume R′ < 0

If R′ < 0, then R′ = 〈r1, r0〉 − β2, and the lower bound implies

〈r1, r0〉 = R′ + β2 ≥ q0β

Hence, r1 ≥ q0, and so the first adjustment condition applies. The other half of
the lower bound implies

〈r1, r0〉 = R′ + β2 ≥ β2 − 〈d1, d0〉

It follows that
r1 + d1 + 1 > β

Let r′1 denote the value after adjustment on line 8, it’s

r′1 = r1 + d1 + 1 mod β = r1 + d1 + 1− β

4



The corresponding two-word remainder is

〈u1, u0, 0〉 − q1〈d1, d0〉 = R′ + 〈d1, do〉
= 〈r1, r0〉 − β2 + 〈d1, do〉
= β(r1 + d1 − β) + r0 + d0

= β(r1 + d1 + 1− β)− β + r0 + d0

= βr′1 + (r0 − β) + d0 < βr1 + d0

If r′1 ≤ d1 − 2, then this is the final remainder R, and it follows that R <
β(d1 − 2) + d0 < 〈d1, d0〉. On the other hand, if r′1 ≥ d1 − 1, then the final
remainder is R = R′, and

R = R′ = βr′1 + (r0 − β) + d0 − 〈d1, d0〉
≥ β(d1 − 1− d1) + (r0 − β)

≥ −2β

Assume R′ ≥ 0

If R′ ≥ 0, then R′ = 〈r1, r0〉. If the first adjustment step isn’t done, then the
second adjustment condition would produce a final remainder in the range

−2β < R < 〈d1, 0〉 ≤ 〈d1, d0〉

But what happens if r1 ≥ q0? We then have the upper bound

〈r1, r0〉 = R′ < β2 − 〈d1, d0〉 − β = β(β − d1 − 1)− d0

It follows that r1 < β − d1 − 1, Hence, the value after the update is

r1 + d1 + 1 mod β = r1 + d1 + 1 ≥ d1 − 1

so we get two adjustments canceling out. Furthermore, since we require d1 ≥
β/2, we have

R = R′ < β2 − 〈d1, d0〉 ≤ β2/2 ≤ 〈d1, d0〉
and R < 〈d1, d0〉, as desired.

References

[1] Torbjörn Granlund. GNU multiple precision arithmetic library. http://

gmplib.org/.

[2] Torbjörn Granlund and Peter L. Montgomery. Division by invariant integers
using multiplication. In Proceedings of the SIGPLAN PLDI’94 Conference,
June 1994.

[3] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Com-
puter Programming. Addison-Wesley, Reading, Massachusetts, third edition,
1998.

[4] Niels Möller and Torbjörn Granlund. Improved division by invariant inte-
gers. IEEE Transactions on Computers, 60:165–175, 2011.

5


