New paper on integer products

Nelson H. F. Beebe beebe at math.utah.edu
Fri Apr 26 21:10:47 CEST 2024


I recorded this article published today that might be of interest to
gmp and/or mpfr folks:

@String{j-COMP-J                = "The Computer Journal"}

@Article{Lemire:2024:ESP,
  author =       "Daniel Lemire",
  title =        "Exact Short Products From Truncated Multipliers",
  journal =      j-COMP-J,
  volume =       "67",
  number =       "4",
  pages =        "1514--1520",
  month =        apr,
  year =         "2024",
  CODEN =        "CMPJA6",
  DOI =          "https://doi.org/10.1093/comjnl/bxad077",
  ISSN =         "0010-4620 (print), 1460-2067 (electronic)",
  ISSN-L =       "0010-4620",
  bibdate =      "Fri Apr 26 12:13:08 MDT 2024",
  bibsource =    "https://www.math.utah.edu/pub/tex/bib/compj2020.bib;
                 https://www.math.utah.edu/pub/tex/bib/cryptography2020.bib;
                 https://www.math.utah.edu/pub/tex/bib/fparith.bib",
  URL =          "http://academic.oup.com/comjnl/article/67/4/1514/7306807",
  acknowledgement = ack-nhfb,
  fjournal =     "Computer Journal",
  journal-URL =  "http://comjnl.oxfordjournals.org/",
}

One application discussed in the introduction is getting accurate
floating-point approximations to integer multiples of transcendental
constants like e and pi.

-------------------------------------------------------------------------------
- Nelson H. F. Beebe                    Tel: +1 801 581 5254                  -
- University of Utah                                                          -
- Department of Mathematics, 110 LCB    Internet e-mail: beebe at math.utah.edu  -
- 155 S 1400 E RM 233                       beebe at acm.org  beebe at computer.org -
- Salt Lake City, UT 84112-0090, USA    URL: http://www.math.utah.edu/~beebe/ -
-------------------------------------------------------------------------------


More information about the gmp-devel mailing list