New paper on integer products
Nelson H. F. Beebe
beebe at math.utah.edu
Fri Apr 26 21:10:47 CEST 2024
I recorded this article published today that might be of interest to
gmp and/or mpfr folks:
@String{j-COMP-J = "The Computer Journal"}
@Article{Lemire:2024:ESP,
author = "Daniel Lemire",
title = "Exact Short Products From Truncated Multipliers",
journal = j-COMP-J,
volume = "67",
number = "4",
pages = "1514--1520",
month = apr,
year = "2024",
CODEN = "CMPJA6",
DOI = "https://doi.org/10.1093/comjnl/bxad077",
ISSN = "0010-4620 (print), 1460-2067 (electronic)",
ISSN-L = "0010-4620",
bibdate = "Fri Apr 26 12:13:08 MDT 2024",
bibsource = "https://www.math.utah.edu/pub/tex/bib/compj2020.bib;
https://www.math.utah.edu/pub/tex/bib/cryptography2020.bib;
https://www.math.utah.edu/pub/tex/bib/fparith.bib",
URL = "http://academic.oup.com/comjnl/article/67/4/1514/7306807",
acknowledgement = ack-nhfb,
fjournal = "Computer Journal",
journal-URL = "http://comjnl.oxfordjournals.org/",
}
One application discussed in the introduction is getting accurate
floating-point approximations to integer multiples of transcendental
constants like e and pi.
-------------------------------------------------------------------------------
- Nelson H. F. Beebe Tel: +1 801 581 5254 -
- University of Utah -
- Department of Mathematics, 110 LCB Internet e-mail: beebe at math.utah.edu -
- 155 S 1400 E RM 233 beebe at acm.org beebe at computer.org -
- Salt Lake City, UT 84112-0090, USA URL: http://www.math.utah.edu/~beebe/ -
-------------------------------------------------------------------------------
More information about the gmp-devel
mailing list