
1

Improved division by invariant integers
Niels Möller and Torbj̈orn Granlund

Abstract—This paper considers the problem of dividing a
two-word integer by a single-word integer, together with a few
extensions and applications. Due to lack of efficient division
instructions in current processors, the division is performed as a
multiplication using a precomputed single-word approximation
of the reciprocal of the divisor, followed by a couple of adjustment
steps. There are three common types of unsigned multiplication
instructions; we define full word multiplication (umul) which
produces the two-word product of two single-word integers, low
multiplication (umullo) which produces only the least significant
word of the product, and high multiplication (umulhi), which
produces only the most significant word. We describe an algo-
rithm which produces a quotient and remainder using oneumul
and oneumullo. This is an improvement over earlier methods,
since the new method uses cheaper multiplication operations.
It turns out we also get some additional savings from simpler
adjustment conditions. The algorithm has been implemented in
version 4.3 of the GMP library. When applied to the problem
of dividing a large integer by a single word, the new algorithm
gives a speedup of roughly 30%, benchmarked onAMD and Intel
processors in the x8664 family.

I. I NTRODUCTION

Integer division instructions are either not present at all
in current microprocessors, or if they are present, they are
considerably slower than the corresponding multiplication
instructions. Multiplication instructions in turn are at least a
few times slower than addition instructions, both in terms of
throughput and latency. The situation was similar a decade
ago [1], and the trend has continued so that divisionlatency
is now typically 5-15 times higher than multiplication latency,
and divisionthroughputis up to 50 times worse than multipli-
cation throughput. Another trend is that branches cost gradu-
ally more, except for branches that the hardware can predict
correctly. But some branches are inherently unpredictable.

Division can be implemented using multiplication, by first
computing an approximate reciprocal, e.g., by Newton iter-
ation, followed by a multiplication that results in a candi-
date quotient. Finally, the remainder corresponding to this
candidate quotient is computed, and if the remainder is too
small or too large, the quotient is adjusted. This procedure
is particularly attractive when the same divisor is used sev-
eral times; then the reciprocal need to be computed only
once. Somewhat surprisingly, a well-tuned Newton reciprocal
followed by multiplication and adjustments wins over the
hardware division instructions even for a single non-invariant
division on modern 64-bitPC processors.

This paper considers the problem of dividing a two-word
number by a single-word number, using a single-word approx-

N. Möller is a long time member of theGMP research team. Email:
nisse@lysator.liu.se

T. Granlund is with the Centre for Industrial and Applied Mathematics,
KTH, Stockholm. Granlund’s work was sponsored by the SwedishFoundation
for Strategic Research. Email:tege@nada.kth.se

imate reciprocal. The main contributions are a new algorithm
for division using such a reciprocal and new algorithms for
computing a suitable reciprocal for 32-bit and 64-bit word
size.

The key idea in our new division algorithm is to compute
the candidate remainder as a single word rather than a double
word, even though it does not quite fit. We then use a fraction
associated with the candidate quotient to resolve the ambiguity.
The new method is more efficient than previous methods for
two reasons.

• It uses cheaper multiplication operations, omitting the
most significant half one of the two products. Computing
the least significant word of a product is a cheaper
operation than computing the most significant word (e.g.,
on AMD Opteron, the difference in latency is one cycle,
while on Intel Core 2, the difference is three cycles).

• The needed adjustment conditions are simpler.

When the division algorithms in this paper are used as build-
ing blocks for algorithms working with large numbers, our
improvements typically affect the linear term of the execution
time. This is of particular importance for applications using
integers of size up to a few dozen words, e.g., on a 64-bit
CPU, 2048-bit RSA corresponds to computations on 32-word
numbers.

The new algorithms have been implemented in theGMP li-
brary [2]. As an example of the resulting speedup, for division
of a large integer by a single word, the new method gives a
speedup of 31% compared to earlier methods, benchmarked
on AMD Opteron and Intel Core 2.

The outline of this paper is as follows. The rest of this
section defines the notation we use. Section II explains how
the needed reciprocal approximation is defined, and how it is
useful. In Sec. III, we describe new algorithms for computing
the reciprocal, and we present our main result, a new algorithm
for dividing a two-word number by a single word. Analysis of
the probability for the adjustment steps in the latter algorithm
is provided in Appendix A. Section IV describes a couple of
extensions, primarily motivated by schoolbook division, the
most important one being a method for dividing a three-word
number by a two-word number. In Sec. V, we consider an
algorithm that can take direct advantage of the new division
method: Dividing a large integer by a single-word. We describe
the x86 64 implementation of this algorithm using the new
method, and compare it to earlier results. Finally, Sec. VI
summarises our conclusions.

A. Notation and conventions

Let ℓ denote the computer word size, and letβ = 2ℓ denote
the base implied by the word size. Lower-case letters denote
single-word numbers, and upper-case letters represent numbers

2

of any size. We use the notationX = 〈xn−1, . . . , x1, x0〉 =
xn−1β

n−1 + · · ·+ x1β + x0, where then-word integerX is
represented by the wordsxi, for 0 ≤ i < n.

We use the following multiplication operations:

〈p1, p0〉 ← umul(a, b) = ab Double word product

p0 ← umullo(a, b) = (ab) mod β Low word

p1 ← umulhi(a, b) =

⌊
ab

β

⌋
High word

Our algorithms depend on the existence and efficiency of
these basic multiplication operations, but they do not require
both umul and umulhi. These are common operations in
all processors, and very few processors lack bothumul and
umulhi 1.

II. D IVISION USING AN APPROXIMATE RECIPROCAL

Consider the problem of dividing a two-word numberU =
〈u1, u0〉 by a single-word numberd, computing the quotient
and remainder

q =

⌊
U

d

⌋
r = U − qd.

Clearly,r is a single-word number. We assume thatu1 < d,
to ensure that also the quotientq fits in a single word. We also
restrict attention to the case thatd is a “normalised” single-
word number, i.e.,β/2 ≤ d < β. This is equivalent to the word
d having its most significant bit set. It follows thatu0/d < 2,
and one can get a reasonable quotient approximation fromu1

alone, without consideringu0.
We have1/β < 1/d ≤ 2/β. We represent the reciprocal

1/d using a fixed-point representation, with a single word and
an additional implicit one bit at the most significant end. We
define the precomputed reciprocal ofd as the integer

v =

⌊
β2 − 1

d

⌋
− β. (1)

The constraints ond imply that 0 < v < β, in particular,v is
a single word number. We have(β + v)/β2 ≈ 1/d, or more
precisely,

1

d
−

1

β2
≤

β + v

β2
<

1

d
. (2)

For the borderline cased = β/2, we have the true reciprocal
1/d = 2/β, which equals(β+v)/β2 for v = β. Our definition
instead gives the single-word numberv = β − 1 in this case.

The usefulness ofv comes from Eq. (2) which implies

U

d
≈ (u1β + u0)

β + v

β2
= u1 +

u1v

β
+

u0

β
+

u0v

β2
. (3)

Since (β + v)/β2 < 1/d, the integer part of the right hand
side is at mostq, and hence a single word. Since the terms on
the right hand side are non-negative, this bound is still valid
if some of the terms are omitted or truncated.

1The SPARC v9 architecture is a notable exception, making high perfor-
mance arithmetic on large numbers very challenging.

A. Previous methods

The trick of using a precomputed reciprocal to replace
integer division by multiplication is well-known. The simplest
variant is Alg. 1, which uses a quotient approximation based
on the first two terms of Eq. (3).

(q, r)← DIV 2BY1(〈u1, u0〉, d, v)

In: β/2 ≤ d < β, u1 < d, v = ⌊(β2 − 1)/d⌋ − β
1 q ← ⌊vu1/β⌋+ u1 // Candidate quotient (umulhi)
2 〈p1, p0〉 ← qd // umul
3 〈r1, r0〉 ← 〈u1, u0〉 − 〈p1, p0〉 // Candidate remainder
4 while r1 > 0 or r0 ≥ d // Repeated at most 3 times
5 q ← q + 1
6 〈r1, r0〉 ← 〈r1, r0〉 − d
7 return q, r0

Algorithm 1: Simple division of two-word number by a single-
word number, using a precomputed single-word reciprocal.

To see how it works, letU = 〈u1, u0〉 and let q denote
the true quotient⌊U/d⌋. We have(β + v) d = β2 − k, where
1 ≤ k ≤ d. Let q′ denote the candidate quotient computed
at line 1, and letq0 = vu1 mod β denote the low, ignored,
half of the product. LetR′ denote the corresponding candidate
remainder, computed on line 3. Then

R′ = U − q′d

= u0 + u1β −
u1(β + v)− q0

β
d

= u0 +
u1k + q0d

β

We see thatR′ ≥ 0, which corresponds toq′ ≤ q. Sincek ≤ d,
we also get the upper boundR′ < β+2d ≤ 4d, which implies
that q′ ≥ q − 3. SinceR′ may be larger thanβ, it must be
computed as a two-word number at line 3 and in the loop, at
line 5, which is executed at most three times.

The problem is that in the two-word subtractionU − q′d,
most, but not all, bits in the most significant word cancel.
Hence, we must use the expensiveumul operation rather than
the cheaperumullo.

The quotient approximation can be improved. By checking
if u0 ≥ d, and if so, incrementingq′ before computingr′, one
getsR′ < 3d and q′ ≥ q − 2. The method in [1], Sec. 8, is
more intricate, guaranteeing thatR′ < 2d, so thatq′ ≥ q − 1.
However, it still computes the full productq′d, so this method
needs oneumul and oneumulhi.

III. N EW ALGORITHMS

In this section, we describe our new algorithms. We first
give efficient algorithms for computing the approximate re-
ciprocal, and we then describe our new algorithm for division
of a double-word number by a single word.

A. Computing the reciprocal

From the definition ofv, we have

v =

⌊
β2 − 1

d

⌋
− β =

⌊
〈β − 1− d, β − 1〉

d

⌋

3

so for architectures that provide an instruction for dividing a
two-word number by a single word, that instruction can be
used to compute the reciprocal straightforwardly.

If such a division instruction is lacking or if it is slow, the
reciprocal can be computed using the Newton iteration

xk+1 = xk + xk(1− xkd). (4)

This equation implies that

1− xk+1d = (1− xkd)2. (5)

Consider one iteration, and assume that the accuracy ofxk is
roughlyn bits. Then the desired accuracy ofxk+1 is about2n
bits, and to achieve that, only about2n bits of d are needed in
Eq. (4). Ifxk is represented usingn bits, matching its accuracy,
then the computation of the right hand side yields4n bits. In
a practical implementation, the result should be truncatedto
match the accuracy of2n bits. The resulting error inxk+1 is
the combination of the error according to Eq (5), the truncation
of the result, and any truncation of thed input.

v ← RECIPROCAL WORD(d)

In: 263 ≤ d < 264

1 d0 ← d mod 2 // Least significant bit
2 d9 ← ⌊2

−55d⌋ // Most significant 9 bits
3 d40 ← ⌊2

−24d⌋+ 1 // Most significant 40 bits
4 d63 ← ⌈d/2⌉ // Most significant 63 bits
5 v0 ← ⌊(2

19 − 3× 28)/d9⌋ // By table lookup
6 v1 ← 211v0 − ⌊2

−40v2
0d40⌋ − 1 // 2 umullo

7 v2 ← 213v1 + ⌊2−47v1 (260 − v1d40)⌋ // 2 umullo
8 e← 296 − v2d63 + ⌊v2/2⌋d0 // umullo
9 v3 ← (231v2 + ⌊2−65v2e⌋) mod 264 // umulhi

10 v4 ← (v3 − ⌊2
−64(v3 + 264 + 1) d⌋) mod 264 // umul

11 return v4

Algorithm 2: Computing the reciprocal⌊(β2− 1)/d⌋− β, for
64-bit machines (β = 264).

Algorithm 2 gives one variant, forβ = 264. Here, v0 is
represented as 11 bits,v1 as 21 bits,v2 as 34 bits, andv3 and
v4 as 65-bit values where the most significant bit, which is
always one, is implicit. Note that sinced40 andd63 are rounded
upwards, they may be equal to240 and263 respectively, and
hence not quite fit in 40 and 63 bits.

Theorem 1 (64-bit reciprocal):With β = 264, the outputv
of Alg. 2 satisfies0 < β2 − (β + v) d ≤ d.

Proof: We will prove that the errors in each iteration are
bounded as follows:

e0 = 250 − v0d40 |e0| <
5

8
× 242 (6)

e1 = 260 − v1d40 0 ≤ e1 <
29

32
× 243 (7)

e2 = 297 − v2d 0 < e2 <
873

1024
× 263 + d (8)

e3 = 2128 − (264 + v3) d 0 < e3 < 2d (9)

e4 = 2128 − (264 + v4) d 0 < e4 ≤ d (10)

Each step involves a truncation, and we let0 ≤ δk < 1 denote
the truncation error in each step. Start with (6). Letd′ =
d40 − 231d9, then1 ≤ d′ ≤ 231. We have

v0 =
219 − 3× 28

d9

− δ0

e0 = 250 −
219 − 3× 28

d9

(231d9 + d′) + δ0d40

= 3× 239 + δ0d40 −
219 − 3× 28

d9

d′

From this, we get

e0 ≤ 3× 239 + δ0d40

< 3× 239 + 240 = 5× 239

e0 ≥ 3× 239 −
219 − 3× 28

d9

d′

> 3× 239 − 242 = −5× 239

For (7), we get

v1 = 211v0 − 2−40v2
0d40 − (1− δ1)

e1 = 260 − (211v0 − 2−40v2
0d40) d40 + (1− δ1)d40

= 2−40e2
0 + (1− δ1)d40

It follows that e1 > 0 and that

e1 <

(
5

8

)2

× 244 + 240 =
29

32
× 243

For (8), we first note that the productv1(2
60−v1d40) fits in

64 bits, since the first factor is 21 bits and the second factoris
e1, which fits in 43 bits. Letd′ = 224d40 − d, then1 ≤ d′ ≤
224. We get

v2 = 213v1 + 2−47v1(2
60 − v1d40)− δ2

e2 = 297 − v2(2
24d40 − d′)

= 297 − 224(213v1 + 2−47v1(2
60 − v1d40))d40 + v2d

′ + δ2d

= 2−23e2
1 + v2d

′ + δ2d

It follows that e2 > 0 and that

e2 <

(
29

32

)2

× 263 + 258 + d =
873

1024
× 263 + d

For (9), first note that the valuee, computed at line 8, equals
⌊e2/2⌋. Then (8) implies that this value fits in 64 bits. Letǫ
denote the least significant bit ofe2, so thate = (e2 − ǫ)/2.
Define

v′

3 = 231v2 + ⌊2−66v2(e2 − ǫ)⌋

e′3 = 2128 − v′

3d

(We will see in a moment thatv′

3 = 264 + v3, and hence also
e′3 = e3). We get

e′3 = 2128 − (231v2 + 2−66v2(2
97 − v2d− ǫ)) d + δ3d

= 2−66e2
2 + (2−66v2ǫ + δ3) d

It follows that e′3 > 0 and that

e′3 <

(
873

1024

)2

× 260 +

(
873

4096
+

1

4
+

1

232
+ 1

)
d < 2d

4

v ← RECIPROCAL WORD(d)

In: 231 ≤ d < 232

1 d0 ← d mod 2
2 d10 ← ⌊2

−22d⌋ // Most significant 10 bits
3 d21 ← ⌊2

−11d⌋+ 1 // Most significant 21 bits
4 d31 ← ⌈d/2⌉ // Most significant 31 bits
5 v0 ← ⌊(2

24 − 214 + 29)/d10⌋ // By table lookup
6 v1 ← 24v0 − ⌊2

−32v2
0d21⌋ − 1 // umullo + umulhi

7 e← (248 − v1d31 + ⌊v1/2⌋d0) // umullo
8 v2 ← 215v1 + ⌊2−33v1e⌋ // umulhi
9 v3 ← (v2 − ⌊2

−32(v2 + 232 + 1) d⌋) mod 232 // umul
10 return v3

Algorithm 3: Computing the reciprocal⌊(β2− 1)/d⌋− β, for
32-bit machines (β = 232).

It remains to show that264 ≤ v′

3 < 2× 264. The upper bound
follows from e′3 > 0. For the borderline cased = 264−1, one
can verify thatv′

3 = 264, and ford ≤ 264 − 2, we get

v′

3 =
2128 − e′3

d
≥

2128 − e′3
264 − 2

= 264 +
2× 264 − e3

264 − 2
> 264.

For the final adjustment step, we have

⌊2−64(v3 + 264 + 1)d⌋ = ⌊2−64(2128 − e3 + d)⌋

= 264 + ⌊2−64(d− e3)⌋

=

{
264 e3 ≤ d

264 − 1 e3 > d

Hence, the effect of the adjustment is to increment the recip-
rocal approximation if and only ife3 > d. The desired bound,
Eq. (10), follows.

Algorithm 3 is a similar algorithm forβ = 232. In this
algorithm,v0 is represented as 15 bits,v1 as 18 bits, andv2

andv3 as 33-bit values where the most significant bit, always
one, is implicit. The correctness proof is analogous, with the
following error bounds:

e0 = 235 − v0d21 |e0| <
33

64
× 226

e1 = 249 − v1d 0 < e1 <
2113

4096
× 231 + d

e2 = 264 − (232 + v2)d 0 < e2 < 2d

e3 = 264 − (232 + v3)d 0 < e2 ≤ d

Remarks:
• The final step in the algorithm is not a Newton iteration,

but an adjustment step which adds zero or one to the
reciprocal approximation.

• We gain precision in the first Newton iteration by choos-
ing the initial valuev0 so that the range for the errore0

is symmetric around zero.
• In the Newton iterationx+x(1−xd), there is cancellation

in the subtraction(1 − xd), sincexd is close to 1. In
Alg. 2 and 3 we arrange so that the errorsek, for k ≥ 1,

(q, r)← DIV 2BY1(〈u1, u0〉, d, v)

In: β/2 ≤ d < β, u1 < d, v =
⌊
(β2 − 1)/d

⌋
− β

1 〈q1, q0〉 ← vu1 // umul
2 〈q1, q0〉 ← 〈q1, q0〉+ 〈u1, u0〉
3 q1 ← (q1 + 1) mod β
4 r ← (u0 − q1d) mod β // umullo
5 if r > q0 // Unpredictable condition
6 q1 ← (q1 − 1) mod β
7 r ← (r + d) mod β
8 if r ≥ d // Unlikely condition
9 q1 ← q1 + 1

10 r ← r − d
11 return q1, r

Algorithm 4: New algorithm for dividing a two-word number
by a single-word number, using a precomputed single-word
reciprocal.

are non-negative, and exploit that a certain number of the
high bits ofvkd are know a-priori to be all ones.

• The execution time of Alg. 2 is roughly 48 cycles on
AMD Opteron, and 70 cycles on Intel Core 2.

B. Dividing a two-word number by a single word

To improve performance of division, it would be nice if we
could get away with usingumullo for the multiplicationq′d
in Alg. 1 (line 2), rather than a fullumul. Then the candidate
remainderU − q′d will be computed only moduloβ, even
though the full range of possible values is too large to be
represented by a single word. We will need some additional
information to be able to make a correct adjustment. It turns
out that this is possible, if we take the fractional part of the
quotient approximation into account. Intuitively, we expect the
candidate remainder to be roughly proportional to the quotient
fraction.

Our new and improved method is given in Alg. 4. It is based
on the following theorem.

Theorem 2:Assumeβ/2 ≤ d < β, 0 ≤ u1 < d, and
0 ≤ u0 < β. Put v = ⌊(β2 − 1)/d⌋ − β. Form the two-word
number

〈q1, q0〉 = (β + v)u1 + u0.

Form the candidate quotient and remainder

q̃ = q1 + 1

r̃ = 〈u1, u0〉 − q̃d.

Then r̃ satisfies

max(β − d, q0 + 1)− β ≤ r̃ < max(β − d, q0)

Hencer̃ is uniquely determined giveñr mod β, d andq0.
Proof: We have(β + v) d = β2 − k, where1 ≤ k ≤ d.

Substitution in the expression for̃r gives

r̃ = u1β + u0 − q1d− d =
u1k + u0(β − d) + q0d

β
− d.

5

For the lower bound, we clearly have

r̃ ≥
q0d

β
− d.

This bound implies that both these inequalities hold:

r̃ ≥ −d

r̃ ≥ (q0 − β)
d

β
> q0 − β.

The desired lower bound oñr now follows.
For the upper bound, we have

r̃ <
d2 + β(β − d) + q0d

β
− d

=
β − d

β
(β − d) +

d

β
q0 ≤ max(β − d, q0)

where the final inequality follows from recognising the ex-
pression as a convex combination.
Remark: The lower bound for̃r is attained if and only if
u0 = u1 = 0. Then q1 = q0 = 0, and r̃ = −d. The upper
bound is attained if and only ifu0 = u1 = β−1 andd = β/2.
Thenv = β − 1, q1 = β − 2, q0 = β/2, and r̃ = β/2− 1.

In Alg. 4, denote the value computed at line 4 byr′. Then
r′ = r̃ mod β. A straightforward application of Theorem 2
would compare this value tomax(β − d, q0). In Alg. 4, we
instead comparer′ to q0. To see why this gives the correct
result, consider two cases:

• Assumer̃ ≥ 0. Then r′ = r̃ < max(β − d, q0). Hence,
whenever the condition at line 5 is true, we haver′ < β−
d, so that the addition at the next line does not overflow.
The second adjustment condition, at line 8, reduces the
remainder to the proper range0 ≤ r < d.

• Otherwise,̃r < 0. Thenr′ = r̃+β ≥ max(β−d, q0 +1).
Sincer′ > q0, the condition at line 5 is true, and since
r′ ≥ β − d, the addition(r′ + d) mod β = r′ + d− β =
r̃ +d yields a correct remainder in the proper range. The
condition at line 8 is false.

Of the two adjustment conditions, the first one is inherently
unpredictable, with a non-negligible probability for either
outcome. This means that branch prediction will not be
effective. For good performance, the first adjustment must be
implemented in a branch-free fashion, e.g., using a conditional
move instructions. The second condition,r′ ≥ d, is true with
very low probability (see Appendix A for analysis of this
probability), and can be handled by a predicated branch or
using conditional move.

IV. EXTENSIONS FOR SCHOOLBOOK DIVISION

The key idea in Alg. 4 can be applied to other small
divisions, not just two-word divided by single word (which
we call a “2/1” division). This leads to a family of algorithms,
all which compute a quotient approximation by multiplica-
tion by a precomputed reciprocal, then omit computing the
high, almost cancelling, part of the corresponding candidate
remainder, and finally, they perform an adjustment step using
a fraction associated with the quotient approximation.

We will focus on extensions that are useful for schoolbook
division with a large divisor. The most important extension

(q, 〈r1, r0〉)← DIV 3BY2(〈u2, u1, u0〉, 〈d1, d0〉, v)

In: β/2 ≤ d1 < β, 〈u2, u1〉 < 〈d1, d0〉,
v = ⌊(β2 − 1)/d⌋ − β

1 〈q1, q0〉 ← vu2 // umul
2 〈q1, q0〉 ← 〈q1, q0〉+ 〈u2, u1〉
3 r1 ← (u1 − q1d1) mod β // umullo
4 〈t1, t0〉 ← d0q1 // umul
5 〈r1, r0〉 ← (〈r1, u0〉 − 〈t1, t0〉 − 〈d1, d0〉) mod β2

6 q1 ← (q1 + 1) mod β
7 if r1 ≥ q0

8 q1 ← (q1 − 1) mod β
9 〈r1, r0〉 ← (〈r1, r0〉+ 〈d1, d0〉) mod β2

10 if 〈r1, r0〉 ≥ 〈d1, d0〉 // Unlikely condition
11 q1 ← q1 + 1
12 〈r1, r0〉 ← 〈r1, r0〉 − 〈d1, d0〉
13 return q1, 〈r1, r0〉

Algorithm 5: Dividing a three-word number by a two-word
number, using a precomputed single-word reciprocal.

is 3/2-division, i.e., dividing a three-word number by a two-
word number. This is described next. Later on in this section,
we will also look into variations that produce more than one
quotient word.

A. Dividing a three-word number by a two-word number

For schoolbook division with a large divisor, the simplest
method is to compute one quotient word at a time by divid-
ing the most significant two words of the dividend by the
single most significant word of the divisor, which is a direct
application of Alg. 4. Assuming the divisor is normalised, the
resulting quotient approximation is at most two units too large.
Next, the corresponding remainder candidate is computed and
adjusted if necessary. A drawback with this method is that
the probability of adjustment is significant, and that each
adjustment has to do an addition or a subtraction of large
numbers. To improve performance, it is preferable to compute
a quotient approximation based on one more word of both
dividend and divisor, three words divided by two words. With
a normalised divisor, the quotient approximation is at mostone
off, and the probability of error is small. For more details on
the schoolbook division algorithm, see [3, Sec. 4.3.1, Alg.D]
and [4].

We therefore consider the following problem: Divide
〈u2, u1, u0〉 by 〈d1, d0〉, computing the quotientq and remain-
der 〈r1, r0〉. To ensure thatq fits in a single word, we assume
that 〈u2, u1〉 < 〈d1, d0〉, and like for 2/1 division, we also
assume that the divisor is normalised,d1 ≥ β/2.

Algorithm 5 is a new algorithm for 3/2 division. The adjust-
ment condition at line 7 is inherently unpredictable, and should
therefore be implemented in a branch-free fashion, while the
second one, at line 10, is true with very low probability. The
algorithm is similar in spirit to Alg. 4. The correctness of the
algorithm follows from the following theorem.

Theorem 3:Consider the division of the three-word number
U = 〈u2, u1, u0〉 by the two-word numberD = 〈d1, d0〉.

6

Assume thatβ/2 ≤ d1 < β and 〈u2, u1〉 < 〈d1, d0〉 Put

v =

⌊
β3 − 1

D

⌋
− β

which is in the range0 ≤ v < β. Form the two-word number

〈q1, q0〉 = (β + v)u2 + u1.

Form the candidate quotient and remainder

q̃ = q1 + 1

r̃ = 〈u2, u1, u0〉 − q̃ 〈d1, d0〉.

Then r̃ satisfies
c− β2 ≤ r̃ < c

with
c = max(β2 −D, q0β).

Proof: We have(β + v)D = β3−K, for someK in the
range1 ≤ K ≤ D. Substitution gives

r̃ = U − q̃D

=
u2K + u1(β

2 −D) + u0β + q0D

β
−D.

The lower bounds̃r ≥ −D and r̃ > q0β − β2 follow in the
same way as in the proof of Theorem 2, proving the lower
bound r̃ ≥ c− β2. For the upper bound, the borderline cases
make the proof more involved. We need to consider several
cases.

• If u2 ≤ d1 − 1, then

r̃ <
(d1 − 1)D + (β − 1)(β2 −D) + β2 − βD + q0D

β

=
(β2 −D)2 + q0βD − d0D

β2

=
β2 −D

β2
(β2 −D) +

D

β2
q0β −

d0D

β2

≤ c.

• If u2 = d1, then u1 ≤ d0 − 1, by assumption. In this
case, we get

r̃ <
d1D + (d0 − 1)(β2 −D) + β2 − βD + q0D

β

=
β2 −D

β2
(β2 −D) +

D

β2
q0β

+
(β − d0)

(
(β + 1)D − β3

)

β2

≤ c +
(β − d0)

(
(β + 1)D − β3

)

β2
.

Under the additional assumption thatD ≤ β(β − 1), we
get (β + 1)D− β3 ≤ −β < 0, and it follows that̃r < c.

• Finally, the remaining borderline case isu2 = d1 and
D > β(β − 1). We then haveu2 = d1 = β − 1, 0 ≤
u1 < d0, andv = 0 since(β3−1)/D−β < 1. It follows
that q1 = u2 = β − 1. We get

r̃ = u− βD = β (u1 − d0) + u0 < 0 < c.

Hence the upper bound̃r < c is valid in all cases.

v ← RECIPROCAL WORD 3BY2(〈d1, d0〉)

In: β/2 ≤ d1 < β
1 v ← RECIPROCAL WORD(d1)

// We haveβ2 − d1 ≤ (β + v) d1 < β2.
2 p← d1v mod β // umullo
3 p← (p + d0) mod β
4 if p < d0 // Equivalent to carry out
5 v ← v − 1
6 if p ≥ d1

7 v ← v − 1
8 p← p− d1

9 p← (p− d1) mod β
// We haveβ2 − d1 ≤ (β + v) d1 + d0 < β2.

10 〈t1, t0〉 ← vd0 // umul
11 p← (p + t1) mod β
12 if p < t1 // Equivalent to carry out
13 v ← v − 1
14 if 〈p, t0〉 ≥ 〈d1, d0〉
15 v ← v − 1
16 return v

Algorithm 6: Computing the reciprocal whichDIV 3BY2 ex-
pects,v = ⌊(β3 − 1)/〈d1, d0〉⌋ − β. This is a single word
reciprocal based on a two-word divisor.

B. Computing the reciprocal for 3/2 division

The reciprocal needed by Alg. 5, even though still a single
word, is slightly different from the reciprocal that is needed
by Alg 4. One can use Alg. 2 or Alg. 3 (depending on word
size) to compute the reciprocal of the most significant word
d1, followed by a couple of adjustment steps to take into
account the least significant wordd0. We suggest the following
strategy:

Start with the initial reciprocalv, based ond1 only, and
the corresponding product(β +v) d1β, where only the middle
word is represented explicitly (the high word isβ−1, and the
low word is zero). We then add firstβd0 and thenvd0 to this
product. For each addition, if we get a carry out, we cancel
that carry by appropriate subtractions ofd1 andd0 to get an
underflow. The details are given in Alg. 6.
Remark: The productd1v mod β, computed in line 2, may
be available cheaply, without multiplication, from the inter-
mediate values used in the final adjustment step ofRECIPRO-
CAL WORD (Alg. 2 or Alg. 3).

C. Larger quotients

The basic algorithms for 2/1 division and 3/2 division can
easily be extended in two ways.

• One can substitute double-words or other fixed-size units
for the single words in Alg. 4 and Alg. 5. This way, one
can construct efficient algorithms that produce quotients
of two or more words. E.g., with double-word units, we
get algorithms for division of sizes 4/2 and 6/4.

• In any of the algorithms constructed as above, one can
fix one or more of the least significant words of both

7

(Q, r)← DIV NBY1(U, d)

In: U = 〈un−1 . . . u0〉, β/2 ≤ d < β
Out: Q = 〈qn−1 . . . q0〉

1 v ← RECIPROCAL WORD(d)
2 r ← 0
3 for j = n− 1, . . . , 0
4 (qj , r)← DIV 2BY1(〈r, uj〉, d, v)
5 return Q, r

Algorithm 7: Dividing a large integerU = 〈un−1 . . . u0〉 by a
normalised single-word integerd.

dividend and divisor to zero. This gives us algorithms
for division of sizes such as 3/1 and 5/3 (and applying
this procedure to 3/2 would recover the good old 2/1
division).

Details and applications for some of these variants are de-
scribed in [4].

V. CASE STUDY: X86 64 IMPLEMENTATION OF n/1
DIVISION

Schoolbook division is the main application of 3/2 division,
as was described briefly in the previous section. We now turn
to a more direct application of 2/1 division using Alg. 4.

In this section, we describe our implementation of
DIV NBY1, dividing a large number by a single word number,
for current processors in the x8664 family. We use condi-
tional move (cmov) to avoid branches that are difficult to
handle efficiently by branch-prediction. Besidescmov, the
most crucial instructions used aremul, imul, add, adc,
sub andlea. Detailed latency and throughput measurements
of these instructions, for 32-bit and 64-bit processors in the
x86 family, are given in [5].

We discuss the timing only forAMD Opteron (“K8/K9”)
and Intel Core 2 (65 nm “Conroe”) in this section. TheAMD

Opteron results are valid also for processors with the brand
names Athlon and Phenom2. Other recent Intel processors give
results slightly different from the 65 nm Core 2 results we
describe3.

Our results focus mainly onAMD chips since they are better
optimised for scientific integer operations, i.e., the oneswe
depend on. If we don’t specify host architecture, we are talking
aboutAMD Opteron.

A. Dividing a large integer by a single word

Consider division of ann-word numberU by a single word
numberd. The result of the division is ann-word quotient
and a single-word remainder. This can be implemented by
repeatedly replacing the two most significant words ofU
by their single-word remainder modulod, and recording the

2Phenom has the same multiplication latencies, but slightly higher(!) latency
for division.

3The 45 nm Core 2 has somewhat lower division latency, and the same
multiplication latencies. The Core ix processors (x = 3, 5, 7, 9) have lower
division latency, and forumul, they have lower latency for the low product
word, but higher(!) latency for the high product word.

loop: mov (np, un, 8), %rax
div d
mov %rax, (qp, un, 8)
dec un
jnz loop

Example 1: Basic division loop using thediv instruction,
running at 71 cycles per iteration onAMD Opteron, and 116
cycles on Intel Core 2. Note thatrax andrdx are implicit
input and output arguments to thediv instruction.

corresponding quotient word [3, Sec. 4.3.1, exercise 16]. The
variant shown in Alg. 7 computes a reciprocal ofd (and hence
requires thatd is normalised), and applies our new 2/1 division
algorithm in each step.

To use Alg. 7 directly,d must be normalised. To also handle
unnormalised divisors, we select a shift countk such that
β/2 ≤ 2kd < β. Alg. 7 can then be applied to the shifted
operands2kU and 2kd. The quotient is unchanged by this
transformation, while the resulting remainder has to be shifted
k bits right at the end. Shifting ofU can be done on the fly
in the main loop. In the code examples, registercl holds the
normalisation shift countk.

B. Näıve implementation

The main loop of an implementation in x8664 assembler is
shown in Example. 1. Note that thediv instruction in the x86
family appear to be tailor-made for this loop: This instructions
takes a divisor as the explicit argument. The two-word input
dividend is placed with the most significant word in therdx
register and the least significant word in therax register. The
output quotient is produced inrax and the remainder inrdx.
No other instruction in the loop need to touchrdx as the
remainder is produced by each iteration and consumed in the
next.

However, the dependency between iterations, via the re-
mainder in rdx, means that the execution time is lower
bounded by the latency of thediv instruction, which is
71 cycles onAMD Opteron [5] (and even longer, 116 cycles,
on Intel Core 2). Thanks to parallelism and out-of-order
execution, the rest of the instructions are executed while
waiting for the result from the division. This loop is more than
an order of magnitude slower than the loop for multiplying a
large number by a single-word number.

C. Old division method

The earlier division method from [1] can be implemented
with the main loop in Example 2. The dependency between op-
erations, via therax register, is still crucial to understand the
performance. Consider the sequence of dependent instructions
in the loop, from the first use ofrax until the output value of
the iteration is produced. This is what we call therecurrency
chainof the loop. The assembler listing is annotated with cycle
numbers, forAMD Opteron and Intel Core 2. We let cycle 0 be
the cycle when the first instructions on the recurrency chain
starts executing, and the following instructions in the chain
are annotated with the cycle number of the earliest cycle the

8

loop: mov (up,un,8), %rdx
shld %cl, %rdx, %r14
lea (d,%r14), %r12
bt $63, %r14
cmovnc %r14, %r12

0 0 mov %rax, %r10
0 0 adc $0, %rax
1 2 mul dinv
5 10 add %r12, %rax

mov d, %rax
6 11 adc %r10, %rdx
7 13 not %rdx
8 14 mov %rdx, %r12
8 14 mul %rdx

12 22 add %rax, %r14
13 23 adc %rdx, %r10
14 25 sub d, %r10
13 23 lea (d,%r14), %rax
14 26 cmovnc %r14, %rax

AMD Intel sub %r12, %r10
mov (up,un,8), %r14
mov %r10, 8(qp,un,8)
dec un
jnz loop

Example 2: Previous method using a precomputed reciprocal,
running at 17 cycles per iteration onAMD Opteron, and 32
cycles on Intel Core 2.

instruction can start executing, taking its input dependencies
into account.

To create the annotations, one needs to know the latencies
of the instructions. Most arithmetic instructions, including
cmov andlea have a latency of one cycle. The crucialmul
instruction has a latency of four cycles until the low word of
the product is available inrax, and one more cycle until the
high word is available inrdx. Theimul instructions, which
produces the low half only, also has a latency of four cycles.
These numbers are forAMD , the latencies are slightly longer
on Intel Core 2 (2 cycles foradc and cmov, 5 cycles for
imul and 8 formul). See [5] for extensive empirical timing
data.

Using these latency figures, we find that the latency of the
recurrency chain in Example 2 is 15 cycles. This is a lower
bound on the execution time. It turns out that the loop runs in
17 cycles per iteration; the instructions not on the recurrency
chain are mostly scheduled for execution in parallel with the
recurrency instructions, and there’s plenty of time, 8 cycles,
when theCPU is otherwise just waiting for the results from
the multiplication unit. This is a four time speedup compared
to the 71-cycle loop based on thediv instruction. For Intel
Core 2, the latency of the recurrency chain is 28 cycles, while
the actual running time is 32 cycles per iteration.

D. New division method

The main loop of an implementation of the new division
method is given in Example 3. Annotating the listing with

loop: nop
mov (up,un,8), %r10

0 0 lea 1(%rax), %r11
shld %cl, %r10, %rbp

0 0 mul dinv
4 8 add %rbp, %rax
5 9 adc %r11, %rdx

mov %rax, %r11
mov %rdx, %r13

6 11 imul d, %rdx
10 16 sub %rdx, %rbp

mov d, %rax
11 17 add %rbp, %rax
11 17 cmp %r11, %rbp
12 18 cmovb %rbp, %rax

AMD Intel adc $-1, %r13
cmp d, %rax
jae fix

ok: mov %r13, (qp)
sub $8, qp
dec un
mov %r10, %rbp
jnz loop
jmp done

fix: sub d, %rax
inc %r13
jmp ok

done:

Example 3: Division code (fromGMP-4.3) with the new
division method, based on Alg. 4. Running at 13 cycles per
iteration onAMD Opteron, and 25 cycles on Intel Core 2.

cycle numbers in the same way, we see that the latency of the
recurrency chain is 13 cycles. Note that the rarely taken branch
does not belong to the recurrency chain. The loop actually also
runs at 13 cycles per iteration; all the remaining instructions
are scheduled for execution in parallel with the recurrency
chain4. For Intel Core 2, the latency of the recurrency chain
is 20 cycles, with an actual running time of 25 cycles per
iteration.

Comparing the old and the new method, first make the
assumption (which is conservative in the Opteron case) thatall
the loops can be tuned to get their running times down to the
respective latency bounds. We then get a speedup of 15% on
AMD Opteron and 40% on Intel Core 2. If we instead compare
actual cycle counts, we see a speedup of 31% on both Opteron
and Core 2. On Opteron, we gain one cycle from replacing
one of themul instructions by the fasterimul, the other
cycle shaved off the recurrency chain are due to the simpler
adjustment conditions.

In this application, the code runs slower on Intel Core 2
than onAMD Opteron. The IntelCPU loses some cycles due

4It’s curious that if thenop instruction at the top of the loop is removed,
the loop runs one cycle slower. It seems likely that similar random changes
to the instruction sequence in Example 2 can reduce its running time by one
or even two cycles, to reach the lower bound of 15 cycles.

9

Implementation Recurrency chain latency
and real cycle counts

AMD Opteron Intel Core 2
Näıve div loop (Ex. 1) 71 71 116 116
Old method (Ex. 2) 15 17 28 32
New method (Ex. 3) 13 13 20 25

TABLE I
SUMMARY OF THE LATENCY OF THE RECURRENCY CHAIN, AND ACTUAL

CYCLE COUNTS, FOR TWO X86 64 PROCESSORS. THE LATENCY NUMBERS

ARE LOWER BOUNDS FOR THE ACTUAL CYCLE COUNTS.

to higher latencies for multiplication and carry propagation,
resulting in a higher overall latency of the recurrency chain.
And then it loses some additional cycles due to the fact that
the code was written and scheduled with Opteron in mind.

VI. CONCLUSIONS

We have described and analysed a new algorithm for
dividing a two-word number by a single-word number (“2/1”
division). The key idea is that when computing a candidate
remainder where the most significant word almost cancels, we
omit computing the most significant word. To enable correct
adjustment of the quotient and the remainder, we work with a
slightly more precise quotient approximation than in previous
algorithms, and an associated fractional word.

Like previous methods, we compute the quotient via an
approximate reciprocal of the divisor. We describe new, more
efficient, algorithms for computing this reciprocal for themost
common cases of a word size of 32 or 64 bits.

The new algorithm for 2/1 division directly gives a speedup
of roughly 30% on current processors in the x8664 family,
for the application of dividing a large integer by a single word.
It is curious that on these processors, the combination of our
reciprocal algorithm (Alg. 2) and division algorithm (Alg.4)
is significantly faster than the built in assembler instruction
for 2/1 division. This indicates that the algorithms may be of
interest for implementation inCPU microcode.

We have also described a couple of extensions of the
basic algorithm, primarily to enable more efficient schoolbook
division with a large divisor.

Most of the algorithms we describe have been implemented
in the GMP library [2].

ACKNOWLEDGEMENTS

The authors wish to thank Stephan Tolksdorf, Björn Tere-
lius, David Harvey and Johan Håstad for valuable feedback
on draft versions of this paper. As always, the responsibility
for any remaining errors stays with the authors.

REFERENCES

[1] T. Granlund and P. L. Montgomery, “Division by invariant integers using
multiplication,” in Proceedings of the SIGPLAN PLDI’94 Conference,
June 1994.

[2] T. Granlund, “GNU multiple precision arithmetic library,version 4.3,”
May 2009, http://gmplib.org/.

[3] D. E. Knuth,Seminumerical Algorithms, 3rd ed., ser. The Art of Computer
Programming. Reading, Massachusetts: Addison-Wesley, 1998, vol. 2.

[4] T. Granlund and N. M̈oller, “Division of integers large and small,” August
2009, to appear.

[5] T. Granlund, “Instruction latencies and throughput forAMD and Intel
x86 processors,” 2009, http://gmplib.org/∼tege/x86-timing.pdf.

APPENDIX A
PROBABILITY OF THE SECOND ADJUSTMENT STEP

In this appendix, we analyse the probability of the second
adjustment step (line 8 in Alg. 4), and substantiate our claim
that the second adjustment is unlikely. We use the notation
from Sec. III-B. We also use the notation thatP[event] is the
probability of a given event, andE[X] is the expected value
of a random variableX.

We will treat r̃ as a random variable, but we first need to
investigate for which values of̃r that the second adjustment
step is done. There are two cases:

• If r̃ ≥ d, then r̃ < max(β − d, q0) andd ≥ β − d imply
that r̃ < q0. The first adjustment is skipped, the second
is done.

• If r̃ > q0, thenr̃ < max(β−d, q0) implies that̃r < β−d
and d ≤ r̃ + d < β. The first adjustment is done, then
undone by the second adjustment.

The inequalities̃r ≥ d andr̃ ≥ q0 are thus mutually exclusive,
the former possible only whenq0 > d and the latter possible
only whenq0 < β − d.

One example of each kind, forβ = 25 = 32:

U d q r v k q̃ q0 r̃
414 18 23 0 24 16 22 30 18
504 18 28 0 24 16 28 0 0

To find the probabilities, in this section, we treatr̃ as a
random variable. Consider the expression forr̃,

r̃ =
u1k + u0(β − d) + q0d

β
− d.

We assume we have a fixedd = ξβ, with 1/2 ≤ ξ < 1,
and consideru1 andu0 as independent uniformly distributed
random variables in the ranges0 ≤ u1 < d and0 ≤ u0 < β.
We also make the simplifying assumptions thatk and q0 are
independent and uniformly distributed, in the ranges0 < k ≤
d and0 ≤ q0 < β, and that all these variables arecontinuous
rather than integer-valued.5

Lemma 4:Assume that1/2 ≤ ξ < 1, thatu1, u0, k andq0

are independent random variables, continuously and uniformly
distributed with ranges0 ≤ u1, k ≤ ξβ, 0 ≤ u0, q0 ≤ β. Let

r̃ =
u1k + u0(1− ξ)β + q0ξβ

β
− ξβ.

Then

P[r̃ ≥ ξβ or r̃ ≥ q0]

=
(2− 1/ξ)3

6(1− ξ)2
log

2− 1/ξ

ξ
+

1

6

+ (1− ξ)

(
−

1

18
+

1

2ξ
−

11

12ξ2
+

11

36ξ3

)
(11)

5These assumptions are justified for large word-size. Strictly speaking, with
fixed d, the variablek is of course not random at all. To make this argument
strict, we would have to treatd as a random variable with values in a small
range aroundξβ, e.g., uniformly distributed in the rangeξβ ± β3/4, and
consider the limit asβ → ∞. Then the modulo operations involved in
q0 andk make these variables behave as almost independent and uniformly
distributed.

10

Furthermore, if we define

f(ξ) = 1−
297

64
(1− ξ) +

15

2
(1− ξ)2 −

17

4
(1− ξ)3

then

P[r̃ ≥ ξβ or r̃ ≥ q0] ≈
(1− ξ)6

24f(ξ)
(12)

with an absolute error less than 0.01 percentage points, anda
relative error less than 5%.

Proof: Define the stochastic variables

X =
u1k

ξβ2
R =

u1k + u0(1− ξ)β

ξβ2
Q =

q0

β
.

Now,
r̃

ξβ
= R + Q− 1.

By assumption,Q is uniformly distributed, whileR has a more
complicated distribution. Conditioning onQ = s, we get the
probabilities

P[r̃ ≥ ξβ] =

∫ 1

3−ξ−1/ξ

P[R ≥ 2− s] ds

=

∫ ξ+1/ξ−2

0

P[R ≥ 1 + s] ds

P[r̃ ≥ q0] =

∫ 1−ξ

0

P[R ≥ 1 + (1/ξ − 1)s] ds

=
1

1/ξ − 1

∫ ξ+1/ξ−2

0

P[R ≥ 1 + s] ds.

Adding the probabilities (recall that the events are mutually
exclusive), we get the probability of adjustment as

1

1− ξ

∫ ξ+1/ξ−2

0

P[R ≥ 1 + s] ds. (13)

We next need the probabilitiesP[R ≥ s] for 1 ≤ s ≤
ξ + 1/ξ − 1. By somewhat tedious calculations, we find

P [X ≤ s] =
βs

d

(
1− log

βs

d

)

P[R ≥ s] =
ξ

1− ξ
E[max(0,X − (s− (1/ξ − 1)))]

= −
(s + 1− 1/ξ)2

2(1− ξ)
log

s + 1− 1/ξ

ξ

+
ξ2 − 4(s + 1− 1/ξ) + 3(s + 1− 1/ξ)2

4(1− ξ)
,

where the latter equation is valid only fors in the interval
of interest. Substituting in Eq. (13) and integrating yields
Eq. (11). To approximate this complicated expression, we first
derive its asymptotics:

(1− ξ)6/24 + O
(
(1− ξ)7

)

for ξ close to 1, and

1/36− 13/18(ξ − 1/2) + 34/3(ξ − 1/2)2

+ O
(
(ξ − 1/2)3 log(ξ − 1/2)

)

 0

 0.5

 1

 1.5

 2

 2.5

 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y

[%
]

ξ

Fig. 1. Probability of the unlikely adjustment step, as a function of the ratio
ξ = d/β.

for ξ close to1/2. The coefficients off are chosen to give
the same asymptotics. The error bounds for Eq. (12) are found
numerically.

In Fig. 1, the adjustment probability of Eq. (11) is plotted
as a function of the ratioξ = d/β. This is a rapidly decreasing
function, with maximum value forξ = 1/2, which gives the
worst case probability of1/36 for d close toβ/2. This curve
is based on the assumptions on continuity and independence
of the random variables. For a fixedd and word size, the
adjustment probability for randomu1 andu0 will deviate some
from this continuous curve. In particular, the borderline case
d = β/2 actually gives an adjustment probability of zero, so
it is not the worst case.

