
Division by Invariant Integers using Multiplication

Torbjörn Granlund∗

Cygnus Support

1937 Landings Drive

Mountain View, CA 94043–0801

tege@cygnus.com

Peter L. Montgomery†

Centrum voor Wiskunde en Informatica

780 Las Colindas Road

San Rafael, CA 94903–2346

pmontgom@math.orst.edu

Abstract

Integer division remains expensive on today’s pro-
cessors as the cost of integer multiplication declines.
We present code sequences for division by arbitrary
nonzero integer constants and run–time invariants us-
ing integer multiplication. The algorithms assume a
two’s complement architecture. Most also require that
the upper half of an integer product be quickly accessi-
ble. We treat unsigned division, signed division where
the quotient rounds towards zero, signed division where
the quotient rounds towards −∞, and division where
the result is known a priori to be exact. We give some
implementation results using the C compiler GCC.

1 Introduction

The cost of an integer division on today’s RISC proces-
sors is several times that of an integer multiplication.
The trend is towards fast, often pipelined combinatoric
multipliers that perform an operation in typically less
than 10 cycles, with either no hardware support for
integer division or iterating dividers that are several
times slower than the multiplier.

Table 1.1 compares multiplication and division times
on some processors. This table illustrates that the dis-
crepancy between multiplication and division timing
has been growing.

Integer division is used heavily in base conversions,
number theoretic codes, and graphics codes. Compilers

∗Work done by first author while at Swedish Institute of Com-

puter Science, Stockholm, Sweden.
†Work done by second author while at University of Califor-

nia, Los Angeles. Supported by U.S. Army fellowship DAAL03–

89–G–0063.

generate integer divisions to compute loop counts and
subtract pointers. In a static analysis of FORTRAN
programs, Knuth [13, p. 9] reports that 39% of 46466
arithmetic operators were additions, 22% subtractions,
27% multiplications, 10% divisions, and 2% exponenti-
ations. Knuth’s counts do not distinguish integer and
floating point operations, except that 4% of the divi-
sions were divisions by 2.

When integer multiplication is cheaper than integer
division, it is beneficial to substitute a multiplication
for a division. Multiple authors [2, 11, 15] present al-
gorithms for division by constants, but only when the
divisor divides 2k − 1 for some small k. Magenheimer
et al [16, §7] give the foundation of a more general
approach, which Alverson [1] implements on the Tera
Computing System. Compiler writers are only begin-
ning to become aware of the general technique. For
example, version 1.02 of the IBM RS/6000 xlc and xlf
compilers uses the integer multiply instruction to ex-
pand signed integer divisions by 3, 5, 7, 9, 25, and 125,
but not by other odd integer divisors below 256, and
never for unsigned division.

We assume an N–bit two’s complement architecture.
Unsigned (i.e., nonnegative) integers range from 0 to
2N − 1 inclusive; signed integers range from −2N−1

to 2N−1 − 1. We denote these integers by uword

and sword respectively. Unsigned doubleword integers
(range 0 to 22N − 1) are denoted by udword. Signed
doubleword integers (range −22N−1 to 22N−1 − 1) are
denoted by sdword. The type int is used for shift
counts and logarithms.

Several of the algorithms require the upper half of an
integer product obtained by multiplying two uwords
or two swords. All algorithms need simple operations
such as adds, shifts, and bitwise operations (bit–ops)
on uwords and swords, as summarized in Table 3.1.

We show how to use these operations to divide by ar-
bitrary nonzero constants, as well as by divisors which
are loop invariant or repeated in a basic block, using
one multiplication plus a few simple instructions per di-
vision. The presentation concentrates on three types of

Architecture/Implementation N
Approx.

Year
Time (cycles) for

HIGH(N–bit ∗N–bit)
Time (cycles) for

N–bit/N–bit divide

Motorola MC68020 [18, pp. 9–22] 32 1985 41–44
76–78 (unsigned)
88–90 (signed)

Motorola MC68040 32 1991 20 44
Intel 386 [9] 32 1985 9–38 38
Intel 486 [10] 32 1989 13–42 40
Intel Pentium 32 1993 10 46
SPARC Cypress CY7C601 32 1989 40S 100S

SPARC Viking [20] 32 1992 5 19
HP PA 83 [16] 32 1985 45S 70S

HP PA 7000 32 1990 3FP 70S

MIPS R3000 [12] 32 1988 12P 35P

MIPS R4000 [17]
32
64

1991
12P

20P

75
139

POWER/RIOS I [4, 22] 32 1989 5 (signed only) 19 (signed only)
PowerPC/MPC601 [19] 32 1993 5–10 36
DEC Alpha 21064AA [8] 64 1992 23P 200S

Motorola MC88100 32 1989 17S 38
Motorola MC88110 32 1992 3P 18
S – No direct hardware support; approximate cycle count for software implementation
F – Does not include time for moving data to/from floating point registers
P – Pipelined implementation (i.e., independent instructions can execute simultaneously)

Table 1.1: Multiplication and division times on different CPUs

division, in order by difficulty: (i) unsigned, (ii) signed,
quotient rounded towards zero, (iii) signed, quotient
rounded towards −∞. Other topics are division of a
udword by a run–time invariant uword, division when
the remainder is known a priori to be zero, and testing
for a given remainder. In each case we give the mathe-
matical background and suggest an algorithm which a
compiler can use to generate the code.

The algorithms are ineffective when a divisor is not
invariant, such as in the Euclidean GCD algorithm.

Most algorithms presented herein yield only the quo-
tient. The remainder, if desired, can be computed by
an additional multiplication and subtraction.

We have implemented the algorithms in a develop-
mental version of the GCC 2.6 compiler [21]. DEC uses
some of these algorithms in its Alpha AXP compilers.

2 Mathematical notations

Let x be a real number. Then bxc denotes the largest
integer not exceeding x and dxe denotes the least in-
teger not less than x. Let TRUNC(x) denote the
integer part of x, rounded towards zero. Formally,
TRUNC(x) = bxc if x ≥ 0 and TRUNC(x) = dxe if
x < 0. The absolute value of x is |x|. For x > 0, the
(real) base 2 logarithm of x is log2 x.

A multiplication is written x ∗ y.

If x, y, and n are integers and n 6= 0, then x ≡ y
(mod n) means x− y is a multiple of n.

Two remainder operators are common in language
definitions. Sometimes a remainder has the sign of the
dividend and sometimes the sign of the divisor. We use
the Ada notations

n rem d = n− d ∗TRUNC(n/d) (sign of dividend),
n mod d = n− d ∗ bn/dc (sign of divisor).

(2.1)
The Fortran 90 names are MOD and MODULO.
In C, the definition of remainder is implementation–
dependent (many C implementations round signed
quotients towards zero and use rem remaindering).
Other definitions have been proposed [6, 7].

If n is an udword or sdword, then HIGH(n) and
LOW(n) denote the most significant and least signifi-
cant halves of n. LOW(n) is a uword, while HIGH(n)
is an uword if n is a udword and an sword if n is a
sdword. In both cases n = 2N ∗HIGH(n) + LOW(n).

3 Assumed instructions

The suggested code assumes the operations in Ta-
ble 3.1, on an N–bit machine. Some primitives, such
as loading constants and operands, are implicit in the
notation and are not included in the operation counts.

TRUNC(x) Truncation towards zero; see §2.
HIGH(x), LOW(x) Upper and lower halves of x: see §2.

MULL(x, y) Lower half of product x ∗ y (i.e., product modulo 2N).
MULSH(x, y) Upper half of signed product x ∗ y: If −2N−1 ≤ x, y ≤ 2N−1 − 1,

then x ∗ y = 2N ∗MULSH(x, y) + MULL(x, y).
MULUH(x, y) Upper half of unsigned product x ∗ y: If 0 ≤ x, y ≤ 2N − 1,

then x ∗ y = 2N ∗MULUH(x, y) + MULL(x, y).
AND(x, y) Bitwise AND of x and y.
EOR(x, y) Bitwise exclusive OR of x and y.
NOT(x) Bitwise complement of x. Equal to −1− x

if x is signed, to 2N − 1− x if x is unsigned.
OR(x, y) Bitwise OR of x and y.
SLL(x, n) Logical left shift of x by n bits (0 ≤ n ≤ N − 1).
SRA(x, n) Arithmetic right shift of x by n bits (0 ≤ n ≤ N − 1).
SRL(x, n) Logical right shift of x by n bits (0 ≤ n ≤ N − 1).
XSIGN(x) −1 if x < 0; 0 if x ≥ 0. Short for SRA(x, N − 1) or −SRL(x, N − 1).

x + y, x− y, −x Two’s complement addition, subtraction, negation.

Table 3.1: Mathematical notations and primitive operations

The algorithm in §8 requires the ability to add or
subtract two doublewords, obtaining a doubleword re-
sult; this typically expands into 2–4 instructions.

The algorithms for processing constant divisors re-
quire compile–time arithmetic on udwords.

Algorithms for processing run–time invariant divi-
sors require taking the base 2 logarithm of a positive
integer (sometimes rounded up, sometimes down) and
require dividing a udword by a uword. If the algo-
rithms are used only for constant divisors, then these
operations are needed only at compile time. If the ar-
chitecture has a leading zero count (LDZ) instruction,
then these logarithms can be found from

dlog2 xe = N − LDZ(x− 1),
blog2 xc = N − 1− LDZ(x) (1 ≤ x ≤ 2N − 1).

Some algorithms may produce expressions such as
SRL(x, 0) or −(x− y); the optimizer should make the
obvious simplifications. Some descriptions show an ad-
dition or subtraction of 2N , which is a no-op.

If an architecture lacks arithmetic right shift, then it
can be computed from the identity

SRA(x, `) = SRL(x + 2N−1, `)− 2N−1−`

whenever 0 ≤ ` ≤ N − 1.
If an architecture has only one of MULSH and

MULUH, then the other can be computed using

MULUH(x, y) = MULSH(x, y) + AND(x, XSIGN(y))
+ AND(y, XSIGN(x))

for arbitrary N–bit patterns x, y (interpreted as
uwords for MULUH and as swords for MULSH).

4 Unsigned division

Suppose we want to compile an unsigned division q =
bn/dc, where 0 < d < 2N is a constant or run–time
invariant and 0 ≤ n < 2N is variable. Let’s try to find
a rational approximation m/2N+` of 1/d such that

⌊n

d

⌋

=
⌊m ∗ n

2N+`

⌋

whenever 0 ≤ n ≤ 2N − 1. (4.1)

Setting n = d in (4.1) shows we require 2N+` ≤ m ∗ d.
Setting n = q ∗ d− 1 shows 2N+` ∗ q > m ∗ (q ∗ d− 1).
Multiply by d to derive

(

m ∗ d− 2N+`
)

∗ (q ∗ d− 1) <
2N+`. This inequality will hold for all values of q∗d−1
below 2N if m ∗ d − 2N+` ≤ 2`. Theorem 4.2 below
states that these conditions are sufficient, because the
maximum relative error (1 part in 2N) is too small to
affect the quotient when n < 2N .

Theorem 4.2 Suppose m, d, ` are nonnegative inte-
gers such that d 6= 0 and

2N+` ≤ m ∗ d ≤ 2N+` + 2`. (4.3)

Then bn/dc = bm ∗ n/2N+`c for every integer n with
0 ≤ n < 2N .

Proof. Define k = m ∗ d− 2N+`. Then 0 ≤ k ≤ 2`

by hypothesis. Given n with 0 ≤ n < 2N , write n =
q ∗ d + r where q = bn/dc and 0 ≤ r ≤ d− 1. We must
show that q = bm ∗ n/2N+`c. A calculation gives

m ∗ n

2N+`
− q =

k + 2N+`

d
∗

n

2N+`
− q

=
k ∗ n

d ∗ 2N+`
+

n

d
−

n− r

d

=
k

2`
∗

n

2N
∗

1

d
+

r

d
.

(4.4)

This difference is nonnegative and does not exceed

1 ∗
2N − 1

2N
∗

1

d
+

d− 1

d
= 1−

1

2N ∗ d
< 1. �

Theorem 4.2 allows division by d to be replaced with
multiplication by m/2N+` if (4.3) holds. In general we
require 2` ≥ d−1 to ensure that a suitable multiple of d
exists in the interval [2N+`, 2N+`+2`]. For compatibil-
ity with the algorithms for signed division (§5 and §6),
it is convenient to choose m ∗ d > 2N+` even though
Theorem 4.2 permits equality. Since m can be almost
as large as 2N+1, we don’t multiply by m directly, but
instead by 2N and m − 2N . This leads to the code
in Figure 4.1. Its cost is 1 multiply, 2 adds/subtracts,
and 2 shifts per quotient, after computing constants
dependent only on the divisor.

Initialization (given uword d with 1 ≤ d < 2N):
int ` = dlog2 de;

/* d ≤ 2` ≤ 2 ∗ d− 1 */
uword m′ = b2N ∗ (2` − d)/dc + 1;

/* m′ = b2N+`/dc − 2N + 1 */
int sh1 = min(`, 1);
int sh2 = max(`− 1, 0);

/* sh2 = `− sh1 */
For q = n/d, all uword:

uword t1 = MULUH(m′, n);
q = SRL(t1 + SRL(n− t1, sh1), sh2);

Figure 4.1: Unsigned division by run–time invariant
divisor

Explanation of Figure 4.1. If d = 1, then ` = 0,
so m′ = 1 and sh1 = sh2 = 0. The code computes
t1 = b1 ∗ n/2Nc = 0 and q = n.

If d > 1, then ` ≥ 1, so sh1 = 1 and sh2 = ` − 1.

Since m′ ≤
2N ∗ (2` − d)

d
+1 ≤

2N ∗ (d− 1)

d
+1 < 2N ,

the value of m′ fits in a uword. Since 0 ≤ t1 ≤ n, the
formula for q simplifies to

q = SRL(t1 + SRL(n− t1, 1), `− 1)

=

⌊

t1 + b(n− t1)/2c

2`−1

⌋

=

⌊

b(t1 + n)/2c

2`−1

⌋

=

⌊

t1 + n

2`

⌋

.

(4.5)

But t1 + n = bm′ ∗ n/2Nc + n = b(m′ + 2N) ∗ n/2Nc.
Set m = m′ + 2N = b2N+`/dc+ 1. The hypothesis of
Theorem 4.2 is satisfied since 2N+` < m ∗ d ≤ 2N+` +
d ≤ 2N+` + 2`. �

Caution. Conceptually q is SRL(n + t1, `), as in
(4.5). Do not compute q this way, since n+t1 may over-
flow N bits and the shift count may be out of bounds.

Improvement. If d is constant and a power of 2,
replace the division by a shift.

Improvement. If d is constant and m = m′ +2N is
even, then reduce m/2` to lowest terms. The reduced
multiplier fits in N bits, unlike the original. In rare
cases (e.g., d = 641 on a 32–bit machine, d = 274177
on a 64–bit machine) the final shift is zero.

Improvement. If d is constant and even, rewrite
⌊n

d

⌋

=

⌊

bn/2ec

d/2e

⌋

for some e > 0. Then bn/2ec can be

computed using SRL. Since n/2e < 2N−e, less preci-
sion is needed in the multiplier than before.

These ideas are reflected in Figure 4.2, which gener-
ates code for n/d where n is unsigned and d is constant.
Procedure CHOOSE MULTIPLIER, which is shared
by this and later algorithms, appears in Figure 6.2.

Inputs: uword d and n, with d constant.
uword dodd, t1;
udword m;
int e, `, `dummy, shpost, shpre;
(m, shpost, `) = CHOOSE MULTIPLIER(d, N);
if m ≥ 2N and d is even then

Find e such that d = 2e ∗ dodd and dodd is odd.
/* 2e = AND(d, 2N − d) */

shpre = e;
(m, shpost, `dummy)

= CHOOSE MULTIPLIER(dodd, N − e);
else

shpre = 0;
end if

if d = 2` then

Issue q = SRL(n, `);
else if m ≥ 2N then

assert shpre = 0;
Issue t1 = MULUH(m− 2N , n);
Issue q = SRL(t1 + SRL(n− t1, 1), shpost − 1);

else

Issue q = SRL(MULUH(m, SRL(n, shpre)),
shpost);

end if

Figure 4.2: Optimized code generation of unsigned q =
bn/dc for constant nonzero d

The following three examples illustrate the cases in
Figure 4.2. All assume unsigned 32–bit arithmetic.

Example. q = bn/10c. CHOOSE MULTIPLIER
finds mlow = (236 − 6)/10 and mhigh = (236 + 14)/10.
After one round of divisions by 2, it returns (m, 3, 4),
where m = (234 + 1)/5. The suggested code q =
SRL(MULUH((234 + 1)/5, n), 3) eliminates the pre–
shift by 0. See Table 11.1.

Example. q = bn/7c. Here m = (235 + 3)/7 > 232.
This example uses the longer sequence in Figure 4.1.

Example. q = bn/14c. CHOOSE MULTIPLIER
first returns the same multiplier as when d = 7. The

suggested code uses separate divisions by 2 and 7:

q = SRL(MULUH((234 + 5)/7, SRL(n, 1)), 2).

5 Signed division, quotient

rounded towards 0

Suppose we want to compile a signed division q =
TRUNC(n/d), where d is constant or run–time invari-
ant, 0 < |d| ≤ 2N−1, and where −2N−1 ≤ n ≤ 2N−1−1
is variable. All quotients are to be rounded towards
zero. We could prove a theorem like Theorem 4.2 about
when TRUNC(n/d) = TRUNC(m ∗ n/2N+`) for all n
in a suitable range (cf. (7.1)), but it wouldn’t help since
we can’t compute the right side given only bm∗n/2Nc.
Instead we show how to adjust the estimated quotient
when the dividend or divisor is negative.

Theorem 5.1 Suppose m, d, ` are integers such that
d 6= 0 and 0 < m ∗ |d| − 2N+`−1 ≤ 2`. Let n be an
arbitrary integer such that −2N−1 ≤ n ≤ 2N−1 − 1.
Define q0 = bm ∗ n/2N+`−1c. Then

TRUNC
(n

d

)

=















q0 if n ≥ 0 and d > 0,
1 + q0 if n < 0 and d > 0,
−q0 if n ≥ 0 and d < 0,

−1− q0 if n < 0 and d < 0.

Proof. When n ≥ 0 and d > 0, this is Theorem 4.2
with N replaced by N − 1.

Suppose n < 0 and d > 0, say n = q ∗ d − r where
0 ≤ r ≤ d− 1. Define k = m ∗ d− 2N+`−1. Then

q −
m ∗ n

2N+`−1
=

k

2`
∗
−n

2N−1
∗

1

d
+

r

d
, (5.2)

as in (4.4). Since 0 < k ≤ 2` by hypothesis, the first
fraction on the right of (5.2) is positive and r/d is non-
negative. The sum is at most 1/d + (d − 1)/d = 1, so
q0 = bm ∗ n/2N+`−1c = q − 1, as asserted.

For d < 0, use TRUNC(n/d) = −TRUNC(n/|d|). �

Caution. When d < 0, avoid rewriting the quotient
as TRUNC((−n)/|d|), which fails for n = −2N−1.

For a run–time invariant divisor, this leads to the
code in Figure 5.1. Its cost is 1 multiply, 3 adds,
2 shifts, and 1 bit–op per quotient.

Explanation of Figure 5.1. The multiplier m
satisfies 2N−1 < m < 2N except when d = ±1; in
the latter cases m = 2N + 1. In either case m′ =
m− 2N fits in an sword. We compute bm ∗ n/2Nc as
n+b(m−2N)∗n/2Nc, using MULSH. The subtraction
of XSIGN(n) adds one if n < 0. The last line negates
the tentative quotient if d < 0 (i.e., if dsign = −1). �

Variation. An alternate computation of m′ is m′ =

−TRUNC

(

2N ∗ (2`−1 − |d|) + 1

−|d|

)

. This uses signed

(2N)–bit/N–bit division, with N–bit quotient.

Initialization (given constant sword d with d 6= 0):
int ` = max (dlog2 |d|e, 1);
udword m = 1 + b2N+`−1/|d|c;
sword m′ = m− 2N ;
sword dsign = XSIGN(d);
int shpost = `− 1;

For q = TRUNC(n/d), all sword:
sword q0 = n + MULSH(m′, n);
q0 = SRA(q0, shpost)− XSIGN(n);
q = EOR(q0, dsign)− dsign;

Figure 5.1: Signed division by run–time invariant divi-
sor, rounded towards zero

Overflow detection. The quotient n/d overflows
if n = −2N−1 and d = −1. The algorithm in Figure 5.1
returns −2N−1. If overflow detection is required, the
final subtraction of dsign should check for overflow.

Improvement. If m is constant and even, then re-
duce m/2` to lowest terms, as in the unsigned case.

This improvement is reflected in Figure 5.2, which
generates code for TRUNC(n/d) where d is a nonzero
constant. Figure 5.2 also checks for divisor being a
power of 2 or negative thereof.

Inputs: sword d and n, with d constant and d 6= 0.
udword m;
int `, shpost;
(m, shpost, `) = CHOOSE MULTIPLIER(|d|, N − 1);
if |d| = 1 then

Issue q = d;
else if |d| = 2` then

Issue q = SRA(n + SRL(SRA(n, `− 1), N − `), `);
else if m < 2N−1 then

Issue q = SRA(MULSH(m, n), shpost)−XSIGN(n);
else

Issue q = SRA(n + MULSH(m− 2N , n), shpost)
− XSIGN(n);

Cmt. Caution — m− 2N is negative.
end if

if d < 0 then

Issue q = −q;
end if

Figure 5.2: Optimized code generation of signed q =
TRUNC(n/d) for constant d 6= 0

Example. q = TRUNC(n/3). On a 32–bit machine.
CHOOSE MULTIPLIER(3, 31) returns shpost = 0 and
m = (232 + 2)/3. The code q = MULSH(m, n) −
XSIGN(n) uses one multiply, one shift, one subtract.

6 Signed division, quotient

rounded towards −∞

Some languages require negative quotients to round
towards −∞ rather than zero. With some ingenuity,
we can compute these quotients in terms of quotients
which round towards zero, even if the signs of the div-
idend and divisor are unknown at compile time.

If n and d are integers, then the identities

⌊n

d

⌋

=















TRUNC(n/d) if n ≥ 0 and d > 0,
TRUNC((n + 1)/d)− 1 if n < 0 and d > 0,
TRUNC((n− 1)/d)− 1 if n > 0 and d < 0,
TRUNC(n/d) if n ≤ 0 and d < 0

are easily verified. Since the new numerators n±1 never
overflow, these identities can be used for computation.
They are summarized by

⌊n

d

⌋

= TRUNC

(

n + dsign − nsign

d

)

+ qsign, (6.1)

where dsign = XSIGN(d), nsign = XSIGN(OR(n, n +
dsign)), and qsign = EOR(nsign, dsign). The cost is
2 shifts, 3 adds/subtracts, and 2 bit–ops, plus the di-
vide (n + dsign is a repeated subexpression).

For remainders, a corollary to (2.1) and (6.1) is

n mod d = n− d ∗ TRUNC((n + dsign − nsign)/d)
− d ∗ qsign

= ((n + dsign − nsign) rem d)
− dsign + nsign − d ∗ qsign

= ((n + dsign − nsign) rem d)
+ AND(d− 2 ∗ dsign − 1, qsign).

(6.2)

The last equality in (6.2) can be verified by separately
checking the cases qsign = nsign − dsign = 0 and qsign =
nsign + dsign = −1. The subexpression d− 2 ∗ dsign − 1
depends only on d.

For rounding towards +∞, an analog of (6.1) is

⌈n

d

⌉

= TRUNC

(

n− dsign + npos

d

)

−EOR(dsign, npos),

where dsign = XSIGN(d) and npos = −(n > dsign).
Improvement. If d > 0 is constant, then dsign = 0.

Then (6.1) becomes

⌊n

d

⌋

= TRUNC

(

n− nsign

d

)

+ nsign,

where nsign = XSIGN(n). Since TRUNC(−x) =
−TRUNC(x) and EOR(−1, n) = −1− n = −(n + 1),
this is equivalent to

⌊n

d

⌋

= EOR

(

nsign, TRUNC

(

EOR(nsign, n)

d

))

(d > 0).
(6.3)

The dividend and divisor on the right of (6.3) are both
nonnegative and below 2N−1. One can view them as
signed or as unsigned when applying earlier algorithms.

Improvement. The XSIGN(OR(n, n + dsign)) is
equivalent to −(n ≤ NOT(dsign)) and to −(n <
−dsign), where the relationals produce 1 if true and 0
if false. On the MIPS R2000/R3000 [12], for example,
one can compute

−dsign = SRL(d, N − 1);
−nsign = (n < −dsign); /* SLT, signed */
−qsign = EOR(−nsign, −dsign);
q = TRUNC((n− (−dsign) + (−nsign))/d)− (−qsign);

(six instructions plus the divide), saving an instruction
over (6.1).

Improvement. If n known to be nonzero, then nsign

simplifies to XSIGN(n).

For constant divisors, one can use (6.1) and the al-
gorithm in Figure 5.2. For constant d > 0 a shorter
algorithm, based on (6.3), appears in Figure 6.1.

Inputs: sword n and d, with d constant and d 6= 0.
udword m;
int `, shpost;
(m, shpost, `) = CHOOSE MULTIPLIER(d, N − 1);
if d = 2` then

Issue q = SRA(n, `);
else

assert m < 2N ;
Issue sword nsign = XSIGN(n);
Issue uword q0 = MULUH(m, EOR(nsign, n));
Issue q = EOR(nsign, SRL(q0, shpost));

end if

Figure 6.1: Optimized code generation of signed q =
bn/dc for constant d > 0

Example. Using signed 32–bit arithmetic, the code
for r = n mod 10 (nonnegative remainder) can be

sword nsign = XSIGN(n);
uword q0 = MULUH((233 + 3)/5, EOR(nsign, n));
sword q = EOR(nsign, SRL(q0, 2));
r = n− SLL(q, 1)− SLL(q, 3);.

The cost is 1 multiply, 4 shifts, 2 bit–ops, 2 subtracts.

Alternately, if one has a fast signed division algo-
rithm which rounds quotients towards 0 and returns
remainders, then (6.2) justifies the code

r = ((n−XSIGN(n)) rem 10) + AND(9, XSIGN(n)).

The cost is 1 divide, 1 shift, 1 bit–op, 2 adds/subtracts.

procedure CHOOSE MULTIPLIER(uword d, int prec);
Cmt. d – Constant divisor to invert. 1 ≤ d < 2N .
Cmt. prec – Number of bits of precision needed, 1 ≤ prec ≤ N .
Cmt. Finds m, shpost, ` such that:
Cmt. 2`−1 < d ≤ 2`.
Cmt. 0 ≤ shpost ≤ `. If shpost > 0, then N + shpost ≤ ` + prec.

Cmt. 2N+shpost < m ∗ d ≤ 2N+shpost ∗ (1 + 2−prec).

Cmt. Corollary. If d ≤ 2prec, then m < 2N+shpost ∗ (1 + 21−`)/d ≤ 2N+shpost−`+1.
Cmt. Hence m fits in max(prec, N − `) + 1 bits (unsigned).
Cmt.
int ` = dlog2 de, shpost = `;
udword mlow =

⌊

2N+`/d
⌋

, mhigh =
⌊

(2N+` + 2N+`−prec)/d
⌋

;
Cmt. To avoid numerator overflow, compute mlow as 2N + (mlow − 2N).
Cmt. Likewise for mhigh. Compare m′ in Figure 4.1.

Invariant. mlow =
⌊

2N+shpost/d
⌋

< mhigh = b2N+shpost ∗ (1 + 2−prec)/dc.
while bmlow/2c < bmhigh/2c and shpost > 0 do

mlow = bmlow/2c; mhigh = bmhigh/2c; shpost = shpost − 1;
end while; /* Reduce to lowest terms. */
return (mhigh, shpost, `); /* Three outputs. */
end CHOOSE MULTIPLIER;

Figure 6.2: Selection of multiplier and shift count

7 Use of floating point

One alternative to MULUH and MULSH uses floating
point arithmetic. Let the floating point mantissa be F
bits wide (e.g., F = 53 for IEEE double precision arith-
metic). Then any floating point operation has relative
error at most 21−F , regardless of the rounding mode,
unless exponent overflow or underflow occurs.

Suppose N ≥ 1 and F ≥ N + 3. We claim that

TRUNC
(n

d

)

= TRUNC(qest),

where qest ≈ n ∗

(

1 + 22−F

d

)

,
(7.1)

whenever |n| ≤ 2N − 1 and 0 < |d| < 2N , regardless of
the rounding modes used to compute qest. The proof
assumes that n > 0 and d > 0, by negating both sides
of (7.1) if necessary (the case n = 0 is trivial).

Since the relative error per operation is at most 21−F ,
the estimated quotient qest satisfies

1 + 22−F

(1 + 21−F)
2
∗

n

d
≤ qest ≤

(

1 + 22−F
)

∗
(

1 + 21−F
)2
∗

n

d
.

Use this and the inequalities

1− 2−F ≤ 1− 22−2F <
1 + 22−F

(1 + 21−F)2
,

(1 + 22−F) ∗ (1 + 21−F)2 <
1

1− 23−F
≤

1

1− 2−N

to derive

(1− 2−F) ∗
n

d
< qest <

n/d

1− 2−N
≤

n/d

1− 1
n+1

=
n + 1

d
.

Denote q = TRUNC(n/d). Then qest < (n + 1)/d
implies TRUNC(qest) ≤ q. If qest < q, then

(1− 2−F) ∗ q ≤ (1− 2−F) ∗
n

d
< qest < q.

Both q and qest are exactly representable as floating
point numbers, but there are no representable numbers
strictly between (1−2−F)∗q and q. This contradiction
shows that qest ≥ q and hence q = TRUNC(qest). �

For quotients rounded towards −∞, use (6.1). If
F = 53 and N ≤ 50, then (7.1) can be used for N–bit
integer division. The algorithm may trigger an IEEE
exception for inexactness if the application program
enables that condition.

Alverson [1] uses integer multiplication, but com-
putes the multiplier using floating point arithmetic.

Baker [3] does modular multiplication using a com-
bination of floating point and integer arithmetic.

8 Dividing udword by uword

One primitive operation for multiple–precision arith-
metic [14, p. 251] is the division of a udword by
a uword, obtaining uword quotient and remainder,
where the quotient is known to be less than 2N . We

Initialization (given uword d, where 0 < d < 2N):
int ` = 1 + blog2 dc; /* 2`−1 ≤ d < 2` */
uword m′ = b(2N ∗ (2` − d)− 1)/dc; /* m′ = b(2N+` − 1)/dc − 2N */
uword dnorm = SLL(d, N − `); /* Normalized divisor d ∗ 2N−` */

For q = bn/dc and r = n− q ∗ d,
where d, q, r are uword and n is udword:

uword n2 = SLL(HIGH(n), N − `) + SRL(LOW(n), `); /* See note about shift count. */
uword n10 = SLL(LOW(n), N − `); /* n10 = n1 ∗ 2N−1 + n0 ∗ 2N−` */

/* Ignore overflow. */
sword −n1 = XSIGN(n10);
uword nadj = n10 + AND(−n1, dnorm − 2N); /* n10 + n1 ∗ (dnorm − 2N) */

/* = n1 ∗ (dnorm − 2N−1) + n0 ∗ 2N−` */
/* Underflow is impossible. */

uword q1 = n2 + HIGH
(

m′ ∗ (n2 − (−n1)) + nadj

)

; /* See Lemma 8.1. */
sdword dr = n− 2N ∗ d + (2N − 1− q1) ∗ d; /* dr = n− q1 ∗ d− d, −d ≤ dr < d */
q = HIGH(dr) − (2N − 1− q1) + 2N ; /* Add 1 to quotient if dr ≥ 0. */
r = LOW(dr) + AND(d− 2N , HIGH(dr)); /* Add d to remainder if dr < 0. */

Figure 8.1: Unsigned division of udword by run–time invariant uword.

describe a way to compute this quotient and remain-
der after some preliminary computations involving only
the divisor, when the divisor is a run–time invariant ex-
pression.

Lemma 8.1 Suppose that d, m, and ` are nonnegative
integers such that 2`−1 ≤ d < 2` ≤ 2N and

0 < 2N+` −m ∗ d ≤ d. (8.2)

Given n with 0 ≤ n ≤ d ∗ 2N − 1, write n = n2 ∗ 2` +
n1 ∗ 2`−1 + n0, where n0, n1, and n2 are integers with
0 ≤ n1 ≤ 1 and 0 ≤ n0 ≤ 2`−1 − 1. Define integers q1

and q0 by

q1 ∗ 2N + q0 = n2 ∗ 2N + (n2 + n1) ∗ (m− 2N)
+ n1 ∗

(

d ∗ 2N−` − 2N−1
)

+ n0 ∗ 2N−`

(8.3)

and 0 ≤ q0 ≤ 2N − 1. Then 0 ≤ q1 ≤ 2N − 1 and
0 ≤ n− q1 ∗ d < 2 ∗ d.

Proof. Define k = 2N+`−m∗d. Then (8.2) implies
0 < k ≤ d ≤ 2` − 1.

The bound n ≤ d ∗ 2N − 1 implies n2 ≤ d ∗ 2N−`− 1.
Equation (8.2) implies m > 2N+`/d > 2N . A corollary
to (8.3) is

q1 ∗ 2N + q0 = n2 ∗m + n1 ∗ (m− 2N)
+ 2N−` ∗

(

n1 ∗ (d− 2`−1) + n0

)

≤ (d ∗ 2N−` − 1) ∗m + 1 ∗ (m− 2N)
+ 2N−` ∗

(

1 ∗ (2`−1 − 1) + (2`−1 − 1)
)

= 2N−` ∗ (d ∗m− 2) < 22N .

This proves the upper bound on the integer q1.

A straightforward calculation using the definitions of
k and q0 and n0 reveals that

n− q1 ∗ d =
(n2 + n1) ∗ k + q0 ∗ d

2N

+

(

1−
d

2`

)

∗

(

n1 ∗ (d− 2`−1) + n0

)

.

(8.4)
Since 2`−1 ≤ d < 2` by hypothesis, the right side of
(8.4) is nonnegative. This remainder is bounded by

(d ∗ 2N−`) ∗ d + (2N − 1) ∗ d

2N

+

(

1−
d

2`

)

∗

(

1 ∗ (d− 2`−1) + (2`−1 − 1)

)

<

(

d2

2`
+ d

)

+

(

1−
d

2`

)

∗ d = 2 ∗ d,

completing the proof. �

This leads to an algorithm like that in Figure 8.1
when dividing a udword by a run–time invariant
uword with quotient known to be less than 2N . Unlike
the previous algorithms, this code rounds the multiplier
down when computing a reciprocal. After initializa-
tions depending only on the divisor d, this algorithm
requires two products (both halves of each) and 20–25
simple operations (including doubleword adds and sub-
tracts). Five registers hold d, dnorm, `, m′, and N − `.

Note. The shift count ` in the computations of m′

and n2 may equal N . If this is too large, use separate
shifts by `− 1 and 1. If a doubleword shift is available,
compute n2 and n10 together.

9 Exact division by constants

Occasionally a language construct requires a division
whose remainder is known to vanish. An example oc-
curs in C when subtracting two pointers. Their numer-
ical difference is divided by the object size. The object
size is a compile–time constant.

Suppose we want code for q = n/d, where d is a
nonzero constant and n is an expression known to be
divisible by d. Write d = 2e ∗ dodd where dodd is odd.
Find dinv such that 1 ≤ dinv ≤ 2N − 1 and

dinv ∗ dodd ≡ 1 (mod 2N). (9.1)

Then

2e ∗ q = 2e ∗
n

d
=

n

dodd

≡ (dinv ∗ dodd) ∗
n

dodd
= dinv ∗ n (mod 2N),

as in [2]. Hence 2e ∗ q ≡ dinv ∗ n (mod 2N). Since
n/dodd = 2e ∗ q fits in N bits, it must equal the lower
half of the product dinv ∗ n, namely MULL(dinv, n).
An SRA (for signed division) or SRL (for unsigned di-
vision) produces the quotient q.

The multiplicative inverse dinv of dodd modulo 2N

can be found by the extended Euclidean GCD algo-
rithm [14, p. 325]. Another algorithm observes that
(9.1) holds modulo 23 if dinv = dodd. Each Newton
iteration

dinv ← dinv ∗ (2− dinv ∗ dodd) mod 2N (9.2)

doubles the known exponent by which (9.1) holds, so
dlog2(N/3)e iterations of (9.2) suffice.

If dodd = ±1, then dinv = dodd so the multiplication
by dinv is trivial or a negation. If d is odd, then e = 0
and the shift disappears.

A variation tests whether an integer n is exactly di-
visible by a nonzero constant d without computing the
remainder. If d is a power of 2 (or the negative thereof,
in the signed case), then check the lower bits of n to
test whether d divides n. Otherwise compute dinv and
e as above. Let q0 = MULL(dinv, n). If n = q ∗ d for
some q, then q0 = 2e ∗ q must be a multiple of 2e. The
original division is exact (no remainder) precisely when

(i) q0 is a multiple of 2e, and

(ii) q0 is sufficiently small that q0∗dodd is representable
by the original data type.

For unsigned division check that

0 ≤ q0 ≤ 2e ∗

⌊

2N − 1

d

⌋

and that the bottom e bits of q0 (or of n) are zero.
When e > 0, these tests can be combined if the archi-
tecture has a rotate (i.e., circular shift) instruction, or

by expanding this rotate into

OR(SRL(q0, e), SLL(q0, N − e)) ≤

⌊

2N − 1

d

⌋

.

For signed division check that

−2e ∗

⌊

2N−1

d

⌋

≤ q0 ≤ 2e ∗

⌊

2N−1 − 1

d

⌋

and that the bottom e bits of q0 are zero; the inter-
val check can be done with an add and one signed
or unsigned compare. Relatedly, to test whether
n rem d = r, where d and r are constants with
1 ≤ r < d and where n is signed, check whether
MULL(dinv, n − r) is a nonnegative multiple of 2e not
exceeding 2e ∗ b(2N−1 − 1− r)/dc.

Example. To test whether a signed 32–bit value i is
divisible by 100, let dinv = (19 ∗ 232 + 1)/25. Compute
sword q0 = MULL(dinv, i). Next check whether q0

is a multiple of 4 in the interval [−qmax, qmax], where
qmax = (231 − 48)/25.

Since these algorithms require only the lower half of
a product, other optimizations for integer multiplica-
tion apply here too. For example, applying strength
reduction to the C loop

signed long i, imax;

for (i = 0; i < imax; i++) {

if ((i % 100) == 0) {

...

}

}

might yield (** denotes exponentiation)

const unsigned long dinv = (19*2**32 + 1)/25;

const unsigned long qmax = (2**31 - 48)/25;

unsigned long test = qmax;

/* test = dinv*i + qmax mod 2**32 */

for (i = 0; i < imax; i++, test += dinv) {

if (test <= 2*qmax && (test & 3) == 0) {

...

}

}

No explicit multiplication or division remains.

10 Implementation in GCC

We have implemented the algorithms for constant di-
visors in the freely available GCC compiler [21], by
extending its machine– and language–independent in-
ternal code generation. We also made minor machine–
dependent modifications to some of the machine de-

scriptor, or md files to get optimal code. All languages
and almost all processors supported by GCC benefit.
Our changes are scheduled for inclusion in GCC 2.6.

To generate code for division of N–bit quantities,
the CHOOSE MULTIPLIER function needs to per-
form (2N)–bit arithmetic. This makes that procedure
more complex than it might appear in Figure 6.2.

Optimal selection of instructions depending on the
bitsize of the operation is a tricky problem that we
spent quite some time on. For some architectures, it
is important to select a multiplication instruction that
has the smallest available precision. On other architec-
tures, the multiplication can be performed faster using
a sequence of additions, subtractions, and shifts.

We have not implemented any algorithm for run–
time invariant divisors. Only a few architectures
(AMD 29050, Intel x86, Motorola 68k & 88110, and to
some extent IBM POWER) have adequate hardware
support to make such an implementation viable, i.e.,
an instruction that can be used for integer logarithm
computation, and a (2N)–bit/N–bit divide instruction.
Even with hardware support, one must be careful that
the transformation really improves the code; e.g., a
loop might need to be executed many times before the
faster loop body outweighs the cost of the multiplier
computation in the loop header.

11 Results

Figure 11.1 has an example with compile–time constant
divisor that gets drastically faster on all recent proces-
sor implementations. The program converts a binary
number to a decimal string. It calculates one quotient
and one remainder per output digit.

Table 11.1 shows the generated assembler codes for
Alpha, MIPS, POWER, and SPARC. There is no ex-
plicit division. Although initially computed separately,
the quotient and remainder calculations have been
combined (by GCC’s common subexpression elimina-
tion pass).

The unsigned int data type has 32 bits on all four
architectures, but Alpha is a 64–bit architecture. The
Alpha code is longer than the others because it multi-
plies (234 + 1)/5 by x using

4∗
[

(216 +1)∗ (28 +1)∗
(

4∗ [4∗ (4∗x−x)+x]−x
)]

+x

instead of the slower, 23–cycle, mulq. This illustrates
that the multiplications needed by these algorithms
can sometimes be computed quickly using a sequence
of shifts, adds, and subtracts [5], since multipliers for
small constant divisors have regular binary patterns.

Table 11.2 compares the timing on some processor
implementations for the radix conversion routine, with
and without the division elimination algorithms. The
number converted was a full 32–bit number, sufficiently
large to hide procedure calling overhead from the mea-
surements.

We also ran the integer benchmarks from SPEC’92.
The improvement was negligible for most of the pro-
grams; the best improvement seen was only about 3%.
Some benchmarks that involve hashing show improve-
ments up to about 30%. We anticipate significant im-
provements on some number theoretic codes.

References

[1] Robert Alverson. Integer division using recipro-
cals. In Peter Kornerup and David W. Matula,
editors, Proceedings 10th Symposium on Computer
Arithmetic, pages 186–190, Grenoble, France,
June 1991.

[2] Ehud Artzy, James A. Hinds, and Harry J. Saal.
A fast division technique for constant divisors.
CACM, 19(2):98–101, February 1976.

[3] Henry G. Baker. Computing A*B (mod N) ef-
ficiently in ANSI C. ACM SIGPLAN Notices,
27(1):95–98, January 1992.

[4] H.B. Bakoglu, G.F. Grohoski, and R. K. Montoye.
The IBM RISC system/6000 processor: Hardware
overview. IBM Journal of Research and Develop-
ment, 34(1):12–22, January 1990.

[5] Robert Bernstein. Multiplication by integer con-
stants. Software – Practice and Experience,
16(7):641–652, July 1986.

[6] Raymond T. Boute. The Euclidean definition of
the functions div and mod. ACM Transactions on
Programming Languages and Systems, 14(2):127–
144, April 1992.

[7] A.P. Chang. A note on the modulo operation.
SIGPLAN Notices, 20(4):19–23, April 1985.

[8] Digital Equipment Corporation. DECchip 21064-
AA Microprocessor, Hardware Reference Manual,
1st edition, October 1992.

[9] Intel Corporation, Santa Clara, CA. 386 DX
Microprocessor Programmer’s Reference Manual,
1990.

[10] Intel Corporation, Santa Clara, CA. Intel486
Microprocessor Family Programmer’s Reference
Manual, 1992.

[11] David H. Jacobsohn. A combinatoric division al-
gorithm for fixed-integer divisors. IEEE Trans.
Comp., C–22(6):608–610, June 1973.

[12] Gerry Kane. MIPS RISC Architecture. Prentice
Hall, Englewood Cliffs, NJ, 1989.

#define BUFSIZE 50

char *decimal (unsigned int x)

{
static char buf[BUFSIZE];

char *bp = buf + BUFSIZE - 1;

*bp = 0;

do {
*--bp = ’0’ + x % 10;

x /= 10;

} while (x != 0);

return bp; /* Return pointer to first digit */

}

Figure 11.1: Radix conversion code

Alpha MIPS POWER SPARC
lda $2,buf

ldq u $1,49($2)

addq $2,49,$0

mskbl $1,$0,$1

stq u $1,49($2)

L1: zapnot $16,15,$3

s4subq $3,$3,$2

s4addq $2,$3,$2

s4subq $2,$3,$2

sll $2,8,$1

subq $0,1,$0

addq $2,$1,$2

sll $2,16,$1

ldq u $4,0($0)

addq $2,$1,$2

s4addq $2,$3,$2

srl $2,35,$2

mskbl $4,$0,$4

s4addl $2,$2,$1

addq $1,$1,$1

subl $16,$1,$1

addl $1,48,$1

insbl $1,$0,$1

bis $2,$2,$16

bis $1,$4,$1

stq u $1,0($0)

bne $16,L1

ret $31,($26),1

la $5,buf+49

sb $0,0($5)

li $6,0xcccc0000

ori $6,$6,0xcccd

L1: multu $4,$6

mfhi $3

subu $5,$5,1

srl $3,$3,3

sll $2,$3,2

addu $2,$2,$3

sll $2,$2,1

subu $2,$4,$2

addu $2,$2,48

move $4,$3

bne $4,$0,L1

sb $2,0($5)

j $31

move $2,$5

l 10,LC..0(2)

cau 11,0,0xcccc

oril 11,11,0xcccd

cal 0,0(0)

stb 0,0(10)

L1: mul 9,3,11

srai 0,3,31

and 0,0,11

a 9,9,0

a 9,9,3

sri 9,9,3

muli 0,9,10

sf 0,0,3

ai. 3,9,0

ai 0,0,48

stbu 0,-1(10)

bc 4,2,L1

ai 3,10,0

br

sethi %hi(buf+49),%g2

or %g2,%lo(buf+49),%o1

stb %g0,[%o1]

sethi %hi(0xcccccccd),%g2

or %g2,0xcd,%o2

L1: add %o1,-1,%o1

umul %o0,%o2,%g0

rd %y,%g3

srl %g3,3,%g3

sll %g3,2,%g2

add %g2,%g3,%g2

sll %g2,1,%g2

sub %o0,%g2,%g2

add %g2,48,%g2

orcc %g3,%g0,%o0

bne L1

stb %g2,[%o1]
retl

mov %o1,%o0

Table 11.1: Code generated by our GCC for radix conversion

Architecture/Implementation MHz
Time with
division

performed

Time with
division

eliminated

Speedup
ratio

Motorola MC68020 [18, pp. 9–22] 25 39 33 1.2
Motorola MC68040 25 19 14 1.4
SPARC Viking [20] 40 6.4 3.2 2.0
HP PA 7000 99 9.7 2.1 4.6
MIPS R3000 [12] 40 12 7.3 1.7
MIPS R4000 [17] 100 8.3 2.4 3.4
POWER/RIOS I [4, 22] 50 5.0 3.5 1.4

DEC Alpha 21064 [8] 133 22 1.8 12*

*This time difference is artificial. The Alpha architecture has no integer divide
instruction, and the DEC library functions for division are slow.

Table 11.2: Timing (microseconds) for radix conversion with and without division elimination

[13] Donald E. Knuth. An empirical study of FOR-
TRAN programs. Technical Report CS–186, Com-
puter Science Department, Stanford University,
1970. Stanford artificial intelligence project memo
AIM–137.

[14] Donald E. Knuth. Seminumerical Algorithms, vol-
ume 2 of The Art of Computer Programming.
Addison-Wesley, Reading, MA, 2nd edition, 1981.

[15] Shuo-Yen Robert Li. Fast constant division rou-
tines. IEEE Trans. Comp., C–34(9):866–869,
September 1985.

[16] Daniel J. Magenheimer, Liz Peters, Karl Pettis,
and Dan Zuras. Integer multiplication and division
on the HP Precision Architecture. In Proceedings
Second International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (ASPLOS II). ACM, 1987. Published
as SIGPLAN Notices, Volume 22, No. 10, Octo-
ber, 1987.

[17] MIPS Computer Systems, Inc, Sunnyvale, CA.
MIPS R4000 Microprocessor User’s Manual, 1991.

[18] Motorola, Inc. MC68020 32–Bit Microprocessor
User’s Manual, 2nd edition, 1985.

[19] Motorola, Inc. PowerPC 601 RISC Microproces-
sor User’s Manual, 1993.

[20] SPARC International, Inc., Menlo Park, CA. The
SPARC Architecture Manual, Version 8, 1992.

[21] Richard M. Stallman. Using and Porting GCC.
The Free Software Foundation, Cambridge, MA,
1993.

[22] Henry Warren. Predicting Execution Time on the
IBM RISC System/6000. IBM, 1991. Preliminary
Version.

