
Improving GMP Itanium multiplication times

Torbjörn Granlund

2011-01-10

1 Introduction

The Itanium processors have a very odd architecture, allowing 6-way issue in
a completely static pipeline. The gap between easily achievable performance
levels, and the full hardware capability is very large.

This note is about improving basic O(n2) multiplication in the context of GMP.
It seems possible to approach 1 cycle/limb, but it is a daunting task, as is evident
from this note.

Notation and conventions:

• For addmul k, we have an n-limb number U and a k-limb number V . We
reqire that routines work for any n ≥ k.

• The inner loop necessarily handles k double-limb products. Usually, it
handles wk double-limb, where w is the unrolling ways factor.

• We sometimes abbreviate addmul k as amk and mul k as mk to save space.

2 Goals

We start with a summary. Possible speed for addmul k:

k getf.sig/lim cycles/limb method/unrolling ways
1 2 2 ad-hoc
1 1.5 1.75 semi-limping, add using xma
2 3 1.5 ad-hoc
3 3 1.333 + ε aacc/∞ i.e., 2 add, 2 cmp
4 4 1.292 + ε colcy/∞ i.e., column carry
5 5 1.233 + ε colcy/∞
6 6 1.083 + ε popc/∞ i.e., table based popcnt
7 7 1.048 + ε popc/∞ (enough pregs?)
8 8 1.021 + ε popc (enough pregs?)
9 9 1 + ε popc/∞ (enough pregs?)
10 10 1 popc/1 (enough pregs?)

Possible speed for mul k:

1

k getf.sig/limb cycles/limb method/unrolling ways
1 2 2 ad-hoc
1 1.5 1.5 + ε semi-limping
2 3 1.5 ad-hoc
3 3 1.055 + ε aacc/∞
4 4 1.083 + ε aacc/∞
5 5 1.1 + ε aacc/∞
6 6 1 + ε popc/∞
7 7 1 popc/1 (enough pregs?)
8 8 1 popc/1 (enough pregs?)

In order to limit the life of loaded U limbs, we should multiply each U limbs by
all v limbs in ascending order, without any other intervening multiplies. The
xma addition operand should be a former xmahu result, except for addmul 1
and addmul 2 where the xmahu result will not yet be available.

If we load r limbs to gregs, and use earlier product limbs as additive input to
the xma instructions, we can do with k getf.sig for addmul k. Unfortunately, it
seems difficult to cope with latency for k < 3.

It seems to make sense to implement addmul 6, since it is the first really fast
primitive. For RSA-1024 signing, we will do many 8-limb operations, so we
should have mul 3 as a complement, even if we do not provide mul k for all
k ≤ 6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
m1 am6 WDFI 2 2
m2 am6 WDFI 2 2
m3 am6 WDFI 2 2
m4 am6 WDFI 2 2
m5 am6 WDFI 2 2
m6 am6 WDFI 2
am6 LO 3 3 3 3 3 3 3,5 3,5 3,5 3,5 3,5
am6 WDFI 4 4 4 4 4
am6 WD 4 4 4 4 4 4 6 6 6 6 6
m1 1 1 1
m2 1 1 1
m3 1 1 1
m4 1 1 1
m5 1 1 1
m6 1 1
cycles/ulimb 2.00 3.25 4.25 5.50 7.00 7.00 9.00 10.25 11.25 ???? ???? ???? ???? ???? ???? ???? ????

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Table 1: Multiplication primitives and their invocation order in a prospective
mul basecase for 1 ≤ n ≤ 17.

If we are to tweak things really well, we should add at least one more high-speed
addmul predicate, perhaps addmul 5. Then we should avoid mul 1, except for
size 1. Size 7 should use m2 + am5. Size 8 should use m3+am5. Size 9 should
use m4+am5 or m3+am6, etc.

2

An important effect of that is that general multiplication performance will be
more linear in |V |.

[These mul k numbers are based on the addmul k numbers. In reality, they
could possibly be made faster.]

3 How to write addmul k

3.1 addmul 3

The code for addmul 3 using a simple 2-add 2-cmp scheme becomes quite regu-
lar. One gets a 4-bundle block, of which 3 bundles have 2 xma instructions each.
Unfortunately, there will be no bundle space for the loop branch instruction,
meaning that we need to have that in its own bundle, taking up a full cycle.

To manage ldf8’s latency for loading new limbs from U , it is necessary to have
w ≥ 2, or to use Itanium’s modulo-scheduled loops. Due to the cost of branch
control, we might want to unroll even more.
Instructions for addmul k algorithm variant aacc:

7wk xmal xmahu getfsig add cmpltu add1 cmpeqor
3w ld8 ldf8 st8
1 br

Instructions for mul k algorithm variant aacc:
3wk xmal xmahu getfsig

4w(k − 1) add cmpltu add1 cmpeqor
2w ldf8 st8
1 br

ways code size c/l
2 256 1.5
3 384 1.444
4 512 1.417
5 640 1.4
6 768 1.389
7 896 1.381
8 1024 1.375
∞ ∞ 1.333

Table 2: aacc with addmul 3

(Status: Completed for w = 4, not in repo.)

3.2 addmul 4

Generalising addmul 3’s scheme to addmul 4 adds 7 instructions per way, but
it seems difficult to keep to addmul 3’s regular code layout. We can, however,
put instructions in the loop branch bundle, which has 5 free slots, for up to
5-way unrolling, after an extra bundle causes things to slow down. We need a
10-bundle block plus one extra instruction.

3

ways code size c/l
2 336 1.375
3 512 1.333
4 672 1.3125
5 832 1.3
∞ ∞ 1.292

Table 3: aacc with addmul 4

We need to move the an add+cmp+add1 scheme, where in add1 increments a
”column carry” variable that is later added like just another quantity to the
next more significant column.

We thus save a cmp per double-limb product, but add another add+cmp+mov0+add1
per column. The mov0 is needed for initialising a new column carry variable.
Unfortunately, for addmul 4 this does not bring any joy, unless we unroll very
deeply.

Instructions for addmul k algorithm variant colcy:
6wk xmal xmahu getfsig add cmpltu add1
7w ld8 ldf8 st8 add cmpltu mov0 add1
1 br

Instructions for mul k algorithm variant colcy:
6wk xmal xmahu getfsig add cmpltu add1
3w ldf8 st8 mov0
1 br

ways code size c/l
2 336 1.375
3 496 1.333
4 656 1.312
5 816 1.3
∞ ∞ 1.292

Table 4: colcy with addmul 4

One important caveat about this scheme is that the conditional add1 will need
to have the same input and output register. This might seem like no problem,
but if we go for a w-ways scheme where w is not a multiple of k (k = 4 for
addmul k) we will likely be forced to resort to using rotating registers.

If we postpone the add1, and instead collect k carry bits in k predicate registers,
we can use just 5 instructions per double-limb product, at the expense of a
movpr, a mask operation, and a population count, plus an add+cmp when
adding this to the next more significant column.

We may use popcnt or a table lookup. The former needs fewer instructions, the
latter gives shorter latency.

With popcnt, if the last cmpltu runs in cycle t0, movpr can run in cycle t0 + 1,
extru in cycle t0 + 3, popcnt in cycle t0+?, add in cycle t0+?, and its cmpltu
in cycle t0+?. Thus we have a forbidding recurrency path of 10 cycles, so we

4

should stay away from the popcnt instruction.

With table, if the last cmpltu runs in cycle t0, movpr can run in cycle t0 + 1,
extru in cycle t0 + 3, add for forming a table address in cycle t0 + 4, ld1 in
cycle t0 + 5, add in cycle t0 + 6, and its cmpltu in cycle t0 + 7. Thus we have a
recurrency path of 7 cycles.

Instructions for addmul k algorithm variant popc (7 cycle recurrency):
5wk xmal xmahu getfsig add cmpltu
9w ld8 ldf8 st8 add cmpltu movpr extru add ld1
1 br

Instructions for mul k algorithm variant popc (7 cycle recurrency):
5wk xmal xmahu getfsig add cmpltu
6w ldf8 st8 movpr extru add ld1
1 br

For addmul 4 both variants give too high latency.

3.3 addmul 5

For addmul 5 we cannot use popcnt beneficially, due to its latency.

ways code size c/l
1 224 1.400
2 416 1.300
5 1024 1.280
8 1632 1.275
∞ ∞ 1.267

Table 5: aacc with addmul 5

ways code size c/l
1 224 1.400
2 416 1.300
3 608 1.267
4 800 1.250
5 992 1.240
∞ ∞ 1.233

Table 6: colcy with addmul 5

3.4 addmul 6

For addmul 6 we can finally use column population count, but plain column
carry also works well.

3.5 addmul 8

Using aacc we get no joy, but colcy is better:

5

ways code size c/l
1 256 1.333
2 480 1.250
3 704 1.222
4 928 1.208
5 1152 1.200
6 1408 1.222
7 1632 1.214
8 1856 1.208
∞ ∞ 1.194

Table 7: colcy with addmul 6

ways code size c/l
1 224 1.167
3 640 1.111
5 1056 1.1
7 1472 1.095
∞ ∞ 1.083

Table 8: popc with addmul 6

ways code size c/l
1 320 1.250
2 608 1.188
3 896 1.167
4 1184 1.156
5 1472 1.150
∞ ∞ 1.146

Table 9: colcy with addmul 8

6

Using the popcnt scheme, we get very good numbers. However, it is unclear if
we practically can implement this; the number of predicate registers needed is
close to 64, but the rotating registers are just 44 (IIRC). An 8-way unroll would
work, but this would be terribly large.

ways code size c/l
1 288 1.125
2 544 1.062
3 800 1.042
4 1056 1.031
5 1312 1.025
8 2112 1.031
∞ ∞ 1.021

Table 10: popc with addmul 8

4 Final remarks

It would be possible, and perhaps practical in a mul basecase setting, to use
ldpf8 for leading from U . We should then have two loop variants for the two
possible alignments; if U is not 16-byte aligned, we have to load 8 bytes ini-
tially and similarly we would need a final 8-bit load in the end for some align-
ments/sizes. We should absolutely not conditionally invoke an initial addmul 1
“rotated”. We could perhaps run something like a rotated addmul 3 Using ldpf8
frees up w/2 instructions; we can only handle even w.

It would also be possible to reduce the insn count by identifying unlikely con-
ditions, and use branches for those. This should not be considered, since it will
leak in the side channel (i.e., bad for cryptography).

5 The semi-limping approach for mul k

There is another interesting approach to mul k, allowing us to com very close
to 1 c/l for any k at the expense of software pipeline depth. Unfortunately, a
consequence of the deep software pipeline is that we will require large n before
these methods show their full power.

mul 1 0 1 2 3 4 5 6 7 8 9 10 11 n0 n2 n4 n6 a1 a3 a5 a7 8 dmul, 12 getf, 8 ldf8,
8 st8, 4 aacc, br, 12c 1.5 c/l n0 n3 n6 a1 a4 a7 a2 a5 a8 9 dmul, 12 getf, 9 ldf8,
9 st8, 3 aacc, br, 12c 1.333 c/l n0 n3 n6 n9 a1 a4 a7 a10 a2 a5 a8 a11 12 dmul,
16 getf,12 ldf8 12 st8, 4 aacc, br, 16c 1.333 c/l

mul 2 0 1 2 3 4 5 6 7 8 9 10 11

7

mpn mul k(U, v0, . . . , vk−1, n)

In:
1 for `← 0 . . . w2 − 1
2 u` ← up[`] // Read new limbs from U
3 for `← 0 . . . w − 1
4 for i = 0 . . . k − 1
5 plow`,i ← uw`vi mod β
6 phiw`,i ← buw`vi/βc
7 for j ← 1 . . . w − 1
8 for `← 0 . . . w − 1
9 for i = 0 . . . k − 1

10 plow`+j,i ← (uw`+jvi + phiw`+j,i mod β
11 phiw`+j,i ← b(uw`+jvi + phiw`+j,i)/βc
12 Sum plo’s and phi’s

Algorithm 1: Compute UV where V is k limbs, using a w-phase method.

phases code size c/l
1 ? 2
2 ? 1.5
3 ? 1.333
4 ? 1.25
5 ? 1.2
8 ? 1.167
∞ ∞ 1

Table 11: limp with mul 1

8

